Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 12(20): 1687-1692, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28881459

ABSTRACT

Conformationally constrained tetracyclic fluoroquinolones (FQs) were synthesized and profiled for their microbiological spectrum. The installation of a seven-membered ring between the pyrrolidine substituents and the C8 position on the FQ core scaffold resulted in a remarkable enhancement of microbiological potency toward both Gram-positive and Gram-negative bacteria. Focused optimization of seven-membered ring composition, stereochemistry, and amine placement led to the discovery of the two lead compounds that were selected for further progression.


Subject(s)
Fluoroquinolones/chemical synthesis , Fluoroquinolones/pharmacology , Tetracyclines/chemical synthesis , Tetracyclines/pharmacology , Acinetobacter baumannii/drug effects , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/drug effects , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 19(1): 247-50, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19010672

ABSTRACT

A series of oxadiazolone bioisosteres of pregabalin 1 and gabapentin 2 were prepared, and several were found to exhibit similar potency for the alpha(2)-delta subunit of voltage-gated calcium channels. Oxadiazolone 9 derived from 2 achieved low brain uptake but was nevertheless active in models of osteoarthritis. The high clearance associated with compound 9 was postulated to be a consequence of efflux by OAT and/or OCT, and was attenuated on co-administration with cimetidine or probenecid.


Subject(s)
Amines , Cyclohexanecarboxylic Acids , Osteoarthritis/drug therapy , Oxadiazoles/chemistry , Oxadiazoles/therapeutic use , gamma-Aminobutyric Acid/analogs & derivatives , Animals , Brain/metabolism , Drug Interactions , Drug Therapy, Combination , Gabapentin , Octamer Transcription Factors , Organic Anion Transporters , Oxadiazoles/pharmacology , Pregabalin , Rats
3.
Bioorg Med Chem Lett ; 17(13): 3575-80, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17482464

ABSTRACT

Novel 2,4-diaminopyrimidine-based small molecule renin inhibitors are disclosed. Through high throughput screening, parallel synthesis, X-ray crystallography, and structure based drug design, we have developed the first non-chiral, non-peptidic, small molecular template to possess moderate potency against renin. The designed compounds consist of a novel 6-ethyl-5-(1,2,3,4-tetrahydroquinolin-7-yl)pyrimidine-2,4-diamine ring system that exhibit moderate potency (IC(50): 91-650 nM) against renin while remaining 'Rule-of-five' compliant.


Subject(s)
Chemistry, Pharmaceutical/methods , Pyrimidines/chemistry , Renin/antagonists & inhibitors , Animals , Crystallography, X-Ray , Drug Design , Inhibitory Concentration 50 , Models, Chemical , Models, Molecular , Molecular Conformation , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
J Med Chem ; 48(7): 2294-307, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-15801823

ABSTRACT

Pregabalin exhibits robust activity in preclinical assays indicative of potential antiepileptic, anxiolytic, and antihyperalgesic clinical efficacy. It binds with high affinity to the alpha(2)-delta subunit of voltage-gated calcium channels and is a substrate of the system L neutral amino acid transporter. A series of pregabalin analogues were prepared and evaluated for their alpha(2)-delta binding affinity as demonstrated by their ability to inhibit binding of [(3)H]gabapentin to pig brain membranes and for their potency to inhibit the uptake of [(3)H]leucine into CHO cells, a measure of their ability to compete with the endogenous substrate at the system L transporter. Compounds were also assessed in vivo for their ability to promote anxiolytic, analgesic, and anticonvulsant actions. These studies suggest that distinct structure activity relationships exist for alpha(2)-delta binding and system L transport inhibition. However, both interactions appear to play an important role in the in vivo profile of these compounds.


Subject(s)
Amino Acid Transport System L/metabolism , Analgesics/chemical synthesis , Anti-Anxiety Agents/chemical synthesis , Anticonvulsants/chemical synthesis , Calcium Channels/metabolism , gamma-Aminobutyric Acid/analogs & derivatives , gamma-Aminobutyric Acid/chemical synthesis , Amines/antagonists & inhibitors , Amines/metabolism , Analgesics/chemistry , Analgesics/pharmacology , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Brain/metabolism , CHO Cells , Cricetinae , Cricetulus , Cyclohexanecarboxylic Acids/antagonists & inhibitors , Cyclohexanecarboxylic Acids/metabolism , Gabapentin , In Vitro Techniques , Leucine/antagonists & inhibitors , Leucine/metabolism , Male , Mice , Mice, Inbred DBA , Pregabalin , Protein Binding , Protein Subunits/metabolism , Rats , Structure-Activity Relationship , Swine , gamma-Aminobutyric Acid/chemistry , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...