Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 150(7): 074502, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30795669

ABSTRACT

We report the results of a ring polymer molecular dynamics study of the Kubo velocity autocorrelation function of a quantum fluid as para-hydrogen aimed at the comparison with its classical counterpart. Quite different density conditions were considered for both the classical and quantum cases, in order to compare the two systems before and after the dynamical crossover typically undergone by the velocity autocorrelation function (VAF) of fluids at densities around the triple point, where the shape of the function changes from a monotonic to an oscillatory behavior with a negative minimum. A detailed study of the phase diagram of classical para-hydrogen was necessary for a reasonable choice of the classical states to be taken into consideration, in the spirit of the classical principle of corresponding states. The shape of the quantum and classical VAF was thoroughly analyzed, exhibiting at all studied densities clear differences that might be taken as evidence of quantum effects. We show that these differences are substantially reduced by applying a state-dependent time scaling with respect to a reference time identified with the inverse of the collision rate. An even better coincidence in shape is found by comparing the two systems at slightly non-corresponding reduced densities, suggesting that the quantum system behaves almost like the classical one, but at systematically less dense reduced states of the latter. We also find an unexpected and quite interesting density trend of the collision rate of both classical and quantum para-hydrogen, which accounts for the effectiveness of the scaling throughout the explored density range. The mean kinetic energy and the diffusion coefficients are also discussed in some detail.

2.
Phys Rev E ; 95(1-1): 012141, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208346

ABSTRACT

We show that by exploiting multi-Lorentzian fits of the self-dynamic structure factor at various wave vectors it is possible to carefully perform the Q→0 extrapolation required to determine the spectrum Z(ω) of the velocity autocorrelation function of a liquid. The smooth Q dependence of the fit parameters makes their extrapolation to Q=0 a simple procedure from which Z(ω) becomes computable, with the great advantage of solving the problems related to resolution broadening of either experimental or simulated self-spectra. Determination of a single-particle property like the spectrum of the velocity autocorrelation function turns out to be crucial to understanding the whole dynamics of the liquid. In fact, we demonstrate a clear link between the collective mode frequencies and the shape of the frequency distribution Z(ω). In the specific case considered in this work, i.e., liquid Au, analysis of Z(ω) revealed the presence, along with propagating sound waves, of lower frequency modes that were not observed before by means of dynamic structure factor measurements. By exploiting ab initio simulations for this liquid metal we could also calculate the transverse current-current correlation spectra and clearly identify the transverse nature of the above mentioned less energetic modes. Evidence of propagating transverse excitations has actually been reported in various works in the recent literature. However, in some cases, like the present one, these modes are difficult to detect in density fluctuation spectra. We show here that the analysis of the single-particle dynamics is able to unveil their presence in a very effective way. The properties here shown to characterize Z(ω), and the information in it contained therefore allow us to identify it with the density of states (DoS) of the liquid. We demonstrate that only nonhydrodynamic modes contribute to the DoS, thus establishing its purely microscopic origin. Finally, as a by-product of this work, we provide our estimate of the self-diffusion coefficient of liquid gold just above melting.

3.
Phys Rev E ; 95(1-1): 012108, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208443

ABSTRACT

Extending a preceding study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid [Phys. Rev. E 92, 042166 (2015)PLEEE81539-375510.1103/PhysRevE.92.042166] to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion method allows for a full account and understanding of the basic dynamical processes encompassed by a fundamental quantity as the VAF. In particular, besides obtaining evidence of a persisting long-time tail, we assign specific and unambiguous physical meanings to groups of exponential modes related to the longitudinal and transverse collective dynamics, respectively. We have made this possible by consistently introducing the interpretation of the VAF frequency spectrum as a global density of states in fluids, generalizing a solid-state concept, and by giving to specific spectral components, obtained through the VAF exponential expansion, the corresponding meaning of partial densities of states relative to specific dynamical processes. The clear identification of a high-frequency oscillation of the VAF with the near-top excitation frequency in the dispersion curve of acoustic waves is a neat example of the power of the method. As for the transverse mode contribution, its analysis turns out to be particularly important, because the multiexponential expansion reveals a transition marking the onset of propagating excitations when the density is increased beyond a threshold value. While this finding agrees with the recent literature debating the issue of dynamical crossover boundaries, such as the one identified with the Frenkel line, we can add detailed information on the modes involved in this specific process in the domains of both time and frequency. This will help obtain a still missing full account of transverse dynamics, in both its nonpropagating and propagating aspects which are linked through dynamical transitions depending on both the thermodynamic states and the excitation wave vectors.

4.
Article in English | MEDLINE | ID: mdl-26565227

ABSTRACT

The velocity autocorrelation function (VAF), a key quantity in the atomic-scale dynamics of fluids, has been the first paradigmatic example of a long-time tail phenomenon, and much work has been devoted to detecting such long-lasting correlations and understanding their nature. There is, however, much more to the VAF than simply the evidence of this long-time dynamics. A unified description of the VAF from very short to long times, and of the way it changes with varying density, is still missing. Here we show that an approach based on very general principles makes such a study possible and opens the way to a detailed quantitative characterization of the dynamical processes involved at all time scales. From the analysis of molecular dynamics simulations for a slightly supercritical Lennard-Jones fluid at various densities, we are able to evidence the presence of distinct fast and slow decay channels for the velocity correlation on the time scale set by the collision rate. The density evolution of these decay processes is also highlighted. The method presented here is very general, and its application to the VAF can be considered as an important example.

SELECTION OF CITATIONS
SEARCH DETAIL
...