Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 103(6): 906-11, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19427703

ABSTRACT

A Ru-diimine wire, [(4,4',5,5'-tetramethylbipyridine)2Ru(F9bp)]2+ (tmRu-F9bp, where F9bp is 4-methyl-4'-methylperfluorobiphenylbipyridine), binds tightly to the oxidase domain of inducible nitric oxide synthase (iNOSoxy). The binding of tmRu-F9bp is independent of tetrahydrobiopterin, arginine, and imidazole, indicating that the wire resides on the surface of the enzyme, distant from the active-site heme. Photoreduction of an imidazole-bound active-site heme iron in the enzyme-wire conjugate (k(ET) = 2(1) x 10(7) s(-1)) is fully seven orders of magnitude faster than the in vivo process.


Subject(s)
Nitric Oxide Synthase Type II/chemistry , Photochemical Processes , Ruthenium , Catalytic Domain , Electrons , Humans , Imines , Ligands , Nitric Oxide Synthase Type II/radiation effects , Oxidation-Reduction , Protein Binding
2.
J Porphyr Phthalocyanines ; 12(9): 971-978, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-19759857

ABSTRACT

Nitric oxide synthase (NOS) catalyzes the production of nitric oxide from L-arginine and dioxygen at a thiolate-ligated heme active site. Although many of the reaction intermediates are as yet unidentified, it is well established that the catalytic cycle begins with substrate binding and rate-limiting electron transfer to the heme. Here we show that Ru(II)-diimine and Re(I)-diimine electron tunneling wires trigger nanosecond photoreduction of the active-site heme in the enzyme. Very rapid generation of a reduced thiolate-ligated heme opens the way for direct observation of short-lived intermediates in the NOS reaction cycle.

3.
J Am Chem Soc ; 127(45): 15907-15, 2005 Nov 16.
Article in English | MEDLINE | ID: mdl-16277534

ABSTRACT

In a continuing effort to unravel mechanistic questions associated with metalloenzymes, we are developing methods for rapid delivery of electrons to deeply buried active sites. Herein, we report picosecond reduction of the heme active site of inducible nitric oxide synthase bound to a series of rhenium-diimine electron-tunneling wires, [Re(CO)3LL']+, where L is 4,7-dimethylphenanthroline and L' is a perfluorinated biphenyl bridge connecting a rhenium-ligated imidazole or aminopropylimidazole to a distal imidazole (F8bp-im (1) and C3-F8bp-im (2)) or F (F9bp (3) and C3-F9bp (4)). All four wires bind tightly (Kd in the micromolar to nanomolar range) to the tetrahydrobiopterin-free oxidase domain of inducible nitric oxide synthase (iNOSoxy). The two fluorine-terminated wires displace water from the active site, and the two imidazole-terminated wires ligate the heme iron. Upon 355-nm excitation of iNOSoxy conjugates with 1 and 2, the active site Fe(III) is reduced to Fe(II) within 300 ps, almost 10 orders of magnitude faster than the naturally occurring reduction.


Subject(s)
Imines/chemistry , Nitric Oxide Synthase Type II/chemistry , Nitric Oxide Synthase Type II/radiation effects , Photochemistry/methods , Rhenium/chemistry , Animals , Binding Sites , Electron Transport , Heme/chemistry , Iron/chemistry , Luminescence , Oxidation-Reduction , Ultraviolet Rays
4.
J Am Chem Soc ; 127(32): 11212-3, 2005 Aug 17.
Article in English | MEDLINE | ID: mdl-16089428

ABSTRACT

We report direct electrochemistry of the iNOS heme domain in a DDAB film on the surface of a basal plane graphite electrode. Cyclic voltammetry reveals FeIII/II and FeII/I couples at -191 and -1049 mV (vs Ag/AgCl). Imidazole and carbon monoxide in solution shift the FeIII/II potential by +20 and +62 mV, while the addition of dioxygen results in large catalytic waves at the onset of FeIII reduction. Voltammetry at higher scan rates (with pH variations) reveals that the FeIII/II cathodic peak can be resolved into two components, which are attributable to FeIII/II couples of five- and six-coordinate hemes. Digital simulation of our experimental data implicates water dissociation from the heme as a gating mechanism for ET in iNOS.


Subject(s)
Iron/chemistry , Animals , Electron Transport , Humans , Oxidation-Reduction
5.
J Am Chem Soc ; 127(14): 5169-73, 2005 Apr 13.
Article in English | MEDLINE | ID: mdl-15810851

ABSTRACT

Ru(II)- and Re(I)-diimine wires bind to the oxygenase domain of inducible nitric oxide synthase (iNOSoxy). In the ruthenium wires, [Ru(L)2L']2+, L' is a perfluorinated biphenyl bridge connecting 4,4'-dimethylbipyridine to a bulky hydrophobic group (adamantane, 1), a heme ligand (imidazole, 2), or F (3). 2 binds in the active site of the murine iNOSoxy truncation mutants Delta65 and Delta114, as demonstrated by a shift in the heme Soret from 422 to 426 nm. 1 and 3 also bind Delta65 and Delta114, as evidenced by biphasic luminescence decay kinetics. However, the heme absorption spectrum is not altered in the presence of 1 or 3, and Ru-wire binding is not affected by the presence of tetrahydrobiopterin or arginine. These data suggest that 1 and 3 may instead bind to the distal side of the enzyme at the hydrophobic surface patch thought to interact with the NOS reductase module. Complexes with properties similar to those of the Ru-diimine wires may provide an effective means of NOS inhibition by preventing electron transfer from the reductase module to the oxygenase domain. Rhenium-diimine wires, [Re(CO)3L1L1']+, where L1 is 4,7-dimethylphenanthroline and L1' is a perfluorinated biphenyl bridge connecting a rhenium-ligated imidazole to a distal imidazole (F8bp-im) (4) or F (F9bp) (5), also form complexes with Delta114. Binding of 4 shifts the Delta114 heme Soret to 426 nm, demonstrating that the terminal imidazole ligates the heme iron. Steady-state luminescence measurements establish that the 4:Delta114 dissociation constant is 100 +/- 80 nM. Re-wire 5 binds Delta114 with a K(d) of 5 +/- 2 microM, causing partial displacement of water from the heme iron. Our finding that both 4 and 5 bind in the NOS active site suggests novel designs for NOS inhibitors. Importantly, we have demonstrated the power of time-resolved FET measurements in the characterization of small molecule:protein interactions that otherwise would be difficult to observe.


Subject(s)
Imines/chemistry , Luminescent Agents/chemistry , Nitric Oxide Synthase/chemistry , Rhenium/chemistry , Ruthenium/chemistry , Adamantane/analogs & derivatives , Adamantane/chemistry , Energy Transfer , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Kinetics , Models, Molecular , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Pyridines/chemistry , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...