Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 92(12): 2386-2398, 2023 12.
Article in English | MEDLINE | ID: mdl-37904340

ABSTRACT

Pulsed subsidy events create ephemeral fluxes of hyper-abundant resources that can shape annual patterns of consumption and growth for recipient consumers. However, environmental conditions strongly affect local resource availability for much of the year, and can heavily impact consumer foraging and growth patterns prior to pulsed subsidy events. Thus, a consumer's capacity to exploit pulse subsidy resources may be influenced by antecedent environmental conditions, but this has rarely been shown in nature and is unknown in aquatic ecosystems. Here, we sought to understand the importance of hydrologic variation and a salmon pulse subsidy on the foraging and growth patterns of two stream salmonids in a coastal southeast Alaska drainage. To do this, we sampled fish stomach contents at a high temporal frequency (daily-weekly measurements) and analyzed fish consumption rates in relation to streamflow and pulse subsidy resource availability. We then explored the influence of interannual hydrologic variation on access to pulse subsidy resources (i.e. whether fish exceeded an egg consumption gape limit) in a bioenergetic simulation. Prior to Pink Salmon spawning, Dolly Varden and Coho Salmon displayed distinct and nonlinear flow-foraging relationships, where forage for both species consisted primarily of macroinvertebrates. During this time period, consumption maxima coincided with baseflow and the highest observed flow conditions, and consumption minima were observed at severe low-water and intermediate flow values. After salmon spawning began, forage was not significantly related to flow and consisted primarily of salmon eggs. Further, consumption rates increased overall, and foraging patterns did not appear to be affected by flow in either species. Bioenergetic simulations revealed that patterns of interannual hydrologic variation may shift Coho Salmon growth trajectories among years. Together, our results suggest that access to marine pulse subsidy resources may depend on whether antecedent hydrologic conditions are suitable for juvenile salmonids to grow large enough to consume salmon eggs by the onset of spawning.


Subject(s)
Ecosystem , Hydrology , Animals , Salmon , Trout
2.
Sci Total Environ ; 896: 165247, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37400021

ABSTRACT

The frequency of dissolved oxygen depletion events (hypoxia) in coastal aquatic ecosystems has risen dramatically since the late 20th century, yet the causes and consequences of hypoxia for some culturally and economically important species remain poorly understood. In rivers, oxygen depletion can be caused by high densities of spawning Pacific salmon (Oncorhynchus spp.) consuming oxygen faster than can be replaced by reaeration. This process may be exacerbated when salmon densities are artificially inflated, such as when hatchery-origin salmon stray into rivers instead of returning to hatcheries. In Southeast Alaska, hatchery salmon production has increased rapidly since the 1970s, with over 553 million chum salmon (O. keta) and 64 million pink salmon (O. gorbuscha) released in 2021 alone. Straying is pervasive in streams with outlets <25 km from nearshore marine hatchery release sites. Using a previously ground-truthed mechanistic model of dissolved oxygen dynamics, we examined how water temperature and low-flow channel hydraulics contribute to hypoxia vulnerability. We then applied the model to predict hypoxia vulnerability for watersheds within 25 km of hatchery salmon release points, where straying salmon spawner densities are expected to be higher and promote dissolved oxygen depletion. Our model predicted that low-gradient stream reaches, regardless of water temperature, are the most prone to hypoxia due to low reaeration rates. Our spatial analysis determined that nearly 17,000 km of anadromous-accessible stream reaches are vulnerable to high densities of hatchery-origin salmon based on 2021 release sites. To our knowledge, this study is the first to map the spatial variation of hypoxia vulnerability in anadromous watersheds, identify habitat conditions most likely to promote hypoxia, and provide a repeatable analytical approach to identify hypoxia-prone stream reaches that can be updated as empirical data sets improve.


Subject(s)
Oncorhynchus , Salmon , Animals , Ecosystem , Alaska , Rivers , Hypoxia , Oxygen , Water
3.
Glob Chang Biol ; 28(16): 4807-4818, 2022 08.
Article in English | MEDLINE | ID: mdl-35596718

ABSTRACT

Mountain watersheds often contain a mosaic of glacier-, snow-, and rain-fed streams that have distinct hydrologic, temperature, and biogeochemical regimes. However, as glaciers diminish and precipitation shifts from snow to rain, the physical and chemical characteristics that make glacial or snowmelt streams distinct from rain-fed streams will fade. Among the unforeseen consequences of this hydrologic homogenization could be the loss of unique food webs that sustain aquatic consumers. To explore the impacts of a melting cryosphere on stream food webs, we parameterized an aquatic food web model with empirical physicochemical data from glacier-, snow-, and rain-fed streams in southeast Alaska and used the model to simulate the seasonal biomass dynamics of aquatic primary producers and consumers and the growth of juvenile salmon. Model results suggest that glacier-, snow-, and rain-fed streams exhibit seasonal asynchronies in the timing of biofilm and aquatic invertebrate abundance. Although warmer rain-fed streams were more productive during the summer (June through September), colder glacial and snowmelt streams provided enhanced foraging and growth opportunities throughout the remainder of the year. For juvenile salmon that can track peaks in resource abundance within river networks, the loss of meltwater streams strongly constrained modeled growth opportunities by removing spatially and temporally distinct foraging habitats within a watershed. These findings suggest that climate change induced homogenization of high latitude river networks may result in the loss of unique food web dynamics, which could diminish the capacity of watersheds to sustain mobile consumers.


Subject(s)
Food Chain , Rivers , Animals , Climate Change , Ecosystem , Fishes , Ice Cover , Salmon , Seasons
4.
Bioscience ; 69(1): 26-39, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30647476

ABSTRACT

One of the desired outcomes of dam decommissioning and removal is the recovery of aquatic and riparian ecosystems. To investigate this common objective, we synthesized information from empirical studies and ecological theory into conceptual models that depict key physical and biological links driving ecological responses to removing dams. We define models for three distinct spatial domains: upstream of the former reservoir, within the reservoir, and downstream of the removed dam. Emerging from these models are response trajectories that clarify potential pathways of ecological transitions in each domain. We illustrate that the responses are controlled by multiple causal pathways and feedback loops among physical and biological components of the ecosystem, creating recovery trajectories that are dynamic and nonlinear. In most cases, short-term effects are typically followed by longer-term responses that bring ecosystems to new and frequently predictable ecological condition, which may or may not be similar to what existed prior to impoundment.

5.
Ecol Appl ; 27(3): 814-832, 2017 04.
Article in English | MEDLINE | ID: mdl-28078716

ABSTRACT

Restoration is frequently aimed at the recovery of target species, but also influences the larger food web in which these species participate. Effects of restoration on this broader network of organisms can influence target species both directly and indirectly via changes in energy flow through food webs. To help incorporate these complexities into river restoration planning, we constructed a model that links river food web dynamics to in-stream physical habitat and riparian vegetation conditions. We present an application of the model to the Methow River, Washington, USA, a location of on-going restoration aimed at recovering salmon. Three restoration strategies were simulated: riparian vegetation restoration, nutrient augmentation via salmon carcass addition, and side channel reconnection. We also added populations of nonnative aquatic snails and fish to the modeled food web to explore how changes in food web structure mediate responses to restoration. Simulations suggest that side channel reconnection may be a better strategy than carcass addition and vegetation planting for improving conditions for salmon in this river segment. However, modeled responses were strongly sensitive to changes in the structure of the food web. The addition of nonnative snails and fish modified pathways of energy through the food web, which negated restoration improvements. This finding illustrates that forecasting responses to restoration may require accounting for the structure of food webs, and that changes in this structure, as might be expected with the spread of invasive species, could compromise restoration outcomes. Unlike habitat-based approaches to restoration assessment that focus on the direct effects of physical habitat conditions on single species of interest, our approach dynamically links the success of target organisms to the success of competitors, predators, and prey. By elucidating the direct and indirect pathways by which restoration affects target species, dynamic food web models can improve restoration planning by fostering a deeper understanding of system connectedness and dynamics.


Subject(s)
Conservation of Natural Resources , Food Chain , Rivers , Animals , Conservation of Water Resources , Fishes , Introduced Species , Models, Biological , Snails , Washington
6.
Ecology ; 96(1): 274-83, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26236912

ABSTRACT

Theory states that both the spatial complexity of landscapes and the strength of interactions between consumers and their resources are important for maintaining biodiversity and the balance of nature. Spatial complexity is hypothesized to promote biodiversity by reducing the potential for competitive exclusion; whereas, models show that weak trophic interactions can enhance stability and maintain biodiversity by dampening destabilizing oscillations associated with strong interactions. Here, we show that spatial complexity can reduce the strength of consumer-resource interactions in natural food webs. By sequentially aggregating food webs of individual aquatic habitat patches across a floodplain mosaic, we found that increasing spatial complexity resulted in decreases in the strength of interactions between predators and prey, owing to a greater proportion of weak interactions and a reduced proportion of strong interactions in the meta-food web. The main mechanism behind this pattern was that some patches provided predation refugia for species that were often strongly preyed upon in other patches. If weak trophic interactions do indeed promote stability, then our findings may signal an additional mechanism by which complexity and stability are linked in nature. In turn, this may have implications for how the values of landscape complexity, and the costs of biophysical homogenization, are assessed.


Subject(s)
Fishes , Food Chain , Invertebrates , Rivers , Animals , Biodiversity , Washington
7.
Ecol Appl ; 23(1): 189-207, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23495646

ABSTRACT

Although numerous studies have attempted to place species of interest within the context of food webs, such efforts have generally occurred at small scales or disregard potentially important spatial heterogeneity. If food web approaches are to be employed to manage species, studies are needed that evaluate the multiple habitats and associated webs of interactions in which these species participate. Here, we quantify the food webs that sustain rearing salmon and steelhead within a floodplain landscape of the Methow River, Washington, USA, a location where restoration has been proposed to restore side channels in an attempt to recover anadromous fishes. We combined year-long measures of production, food demand, and diet composition for the fish assemblage with estimates of invertebrate prey productivity to quantify food webs within the main channel and five different, intact, side channels; ranging from channels that remained connected to the main channel at low flow to those reduced to floodplain ponds. Although we found that habitats within the floodplain had similar invertebrate prey production, these habitats hosted different local food webs. In the main channel, 95% of total prey consumption flowed to fishes that are not the target of proposed restoration. These fishes consumed 64% and 47% of the prey resources that were found to be important to fueling chinook and steelhead production in the main channel, respectively. Conversely, in side channels, a greater proportion of prey was consumed by anadromous salmonids. As a result, carrying capacity estimates based on food were 251% higher, on average, for anadromous salmonids in side channels than the main channel. However, salmon and steelhead production was generally well below estimated capacity in both the main and side channels, suggesting these habitats are under-seeded with respect to food, and that much larger populations could be supported. Overall, this study demonstrates that floodplain heterogeneity is associated with the occurrence of a mosaic of food webs, all of which were utilized by anadromous salmonids, and all of which may be important to their recovery and persistence. In the long term, these and other fishes would'likely benefit from restoring the processes that maintain floodplain complexity.


Subject(s)
Food Chain , Oncorhynchus mykiss/physiology , Rivers , Salmon/physiology , Animals , Biomass , Feeding Behavior , Invertebrates , Reproduction
8.
Environ Manage ; 49(3): 734-50, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22323109

ABSTRACT

Pre-restoration studies typically focus on physical habitat, rather than the food-base that supports aquatic species. However, both food and habitat are necessary to support the species that habitat restoration is frequently aimed at recovering. Here we evaluate if and how the productivity of the food-base that supports fish production is impaired in a dredge-mined floodplain within the Yankee Fork Salmon River (YFSR), Idaho (USA); a site where past restoration has occurred and where more has been proposed to help recover anadromous salmonids. Utilizing an ecosystem approach, we found that the dredged segment had comparable terrestrial leaf and invertebrate inputs, aquatic primary producer biomass, and production of aquatic invertebrates relative to five reference floodplains. Thus, the food-base in the dredged segment did not necessarily appear impaired. On the other hand, we observed that off-channel aquatic habitats were frequently important to productivity in reference floodplains, and the connection of these habitats in the dredged segment via previous restoration increased invertebrate productivity by 58%. However, using a simple bioenergetic model, we estimated that the invertebrate food-base was at least 4× larger than present demand for food by fish in dredged and reference segments. In the context of salmon recovery efforts, this observation questions whether additional food-base productivity provided by further habitat restoration would be warranted in the YFSR. Together, our findings highlight the importance of studies that assess the aquatic food-base, and emphasize the need for more robust ecosystem models that evaluate factors potentially limiting fish populations that are the target of restoration.


Subject(s)
Conservation of Natural Resources , Ecosystem , Food Chain , Salmon/physiology , Animals , Fishes/physiology , Idaho , Invertebrates/growth & development , Mining , Models, Biological , Plant Development , Population Dynamics , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...