Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 435(16): 167956, 2023 08 15.
Article in English | MEDLINE | ID: mdl-36642157

ABSTRACT

The exon-junction complex (EJC) plays a role in post-transcriptional gene regulation and exerts antiviral activity towards several positive-strand RNA viruses. However, the spectrum of RNA viruses that are targeted by the EJC or the underlying mechanisms are not well understood. EJC components from Arabidopsis thaliana were screened for antiviral activity towards Turnip crinkle virus (TCV, Tombusviridae). Overexpression of the accessory EJC component CASC3 inhibited TCV accumulation > 10-fold in Nicotiana benthamiana while knock-down of endogenous CASC3 resulted in a > 4-fold increase in TCV accumulation. CASC3 forms cytoplasmic condensates and deletion of the conserved SELOR domain reduced condensate size 7-fold and significantly decreased antiviral activity towards TCV. Mass spectrometry of CASC3 complexes did not identify endogenous stress granule or P-body markers and CASC3 failed to co-localize with an aggresome-specific dye suggesting that CASC3 condensates are distinct from well-established membraneless compartments. Mass spectrometry and bimolecular fluorescence complementation assays revealed that CASC3 sequesters Heat shock protein 70 (Hsp70-1) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), two host factors with roles in tombusvirus replication. Overexpression of Hsp70-1 or GAPDH reduced the antiviral activity of CASC3 2.1-fold and 2.8-fold, respectively, and suggests that CASC3 inhibits TCV by limiting host factor availability. Unrelated Tobacco mosaic virus (TMV) also depends on Hsp70-1 and CASC3 overexpression restricted TMV accumulation 4-fold and demonstrates that CASC3 antiviral activity is not TCV-specific. Like CASC3, Auxin response factor 19 (ARF19) forms poorly dynamic condensates but ARF19 overexpression failed to inhibit TCV accumulation and suggests that CASC3 has antiviral activities that are not ubiquitous among cytoplasmic condensates.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Biomolecular Condensates , Carmovirus , Host-Pathogen Interactions , Arabidopsis/genetics , Arabidopsis/virology , Biomolecular Condensates/metabolism , Biomolecular Condensates/virology , Carmovirus/metabolism , Cell Nucleus , Arabidopsis Proteins/metabolism
2.
Front Neurosci ; 16: 818757, 2022.
Article in English | MEDLINE | ID: mdl-35401096

ABSTRACT

Spinocerebellar ataxia (SCA) type 7 (SCA7) is caused by a CAG trinucleotide repeat expansion in the ataxin 7 (ATXN7) gene, which results in polyglutamine expansion at the amino terminus of the ATXN7 protein. Although ATXN7 is expressed widely, the best characterized symptoms of SCA7 are remarkably tissue specific, including blindness and degeneration of the brain and spinal cord. While it is well established that ATXN7 functions as a subunit of the Spt Ada Gcn5 acetyltransferase (SAGA) chromatin modifying complex, the mechanisms underlying SCA7 remain elusive. Here, we review the symptoms of SCA7 and examine functions of ATXN7 that may provide further insights into its pathogenesis. We also examine phenotypes associated with polyglutamine expanded ATXN7 that are not considered symptoms of SCA7.

3.
Cells ; 11(3)2022 02 05.
Article in English | MEDLINE | ID: mdl-35159365

ABSTRACT

Ubiquitination refers to the conjugation of the ubiquitin protein (a small protein highly conserved among eukaryotes) to itself or to other proteins through differential use of ubiquitin's seven internal linkage sites or the amino-terminal amino group. By creating different chain lengths, an enormous proteomic diversity may be formed. This creates a signaling system that is central to controlling almost every conceivable protein function, from proteostasis to regulating enzyme function and everything in between. Protein ubiquitination is reversed through the activity of deubiquitinases (DUBs), enzymes that function to deconjugate ubiquitin from itself and protein substrates. DUBs are regulated through several mechanisms, from controlled subcellular localization within cells to developmental and tissue specific expression. Misregulation of DUBs has been implicated in several diseases including cancer and neurodegeneration. Here we present a brief overview of the role of DUBs in neurodegeneration, and as potential therapeutic targets.


Subject(s)
Deubiquitinating Enzymes/metabolism , Neurodegenerative Diseases/genetics , Humans , Neurodegenerative Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...