Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(3): e06616, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33869851

ABSTRACT

The crude oils and their source rocks from Niger Delta basin, Nigeria were investigated by optical microscopy for the maceral compositions and by gas chromatography - mass spectrometry (GC-MS) for the composition, distribution and abundances of saturated and aromatic biomarkers. The data obtained showed that the rock samples and crude oils were formed from the mixed input of terrestrial and marine organic matter, and deposited under oxic to sub-oxic conditions in a lacustrine-fluvial/deltaic environment. The aliphatic maturity parameters calculated for the source rocks and oil samples showed that they have immature to early mature; and early oil window maturity respectively, whereas aromatic maturity ratios indicated that they were within immature to peak of oil generation and beyond; and peak to late oil generative window, respectively. The crude oils and source rocks were characterized by the dominance of C2-fluorenes over other alkylated homologues. The predominance of C2 fluorenes over other alkylated homologues might have been influenced by source facies and depositional environments. The relative percentages of fluorenes (FLs %), dibenzofurans (DBFs %) and dibenzothiophenes (DBTs %) values for the rock samples range from 9.36 to 38.04 %, 35.82-71.60 % and 10.02-42.52 %, respectively, while the crude oils have ranges of values from 18.91 to 56.38 %, 24.90-72.34 % and 5.99-19.02 %, respectively. These values showed that the crude oils and source rocks originated from the mixture of organic matter (terrestrial and marine) with higher contribution from terrestrial organic matter and deposited in a marine/brackish-saline lacustrine/swampy environments. The abundance and distribution of fluorenes and its derivatives were found to be effective in determining the origin and depositional environments of crude oils and source rocks in the Niger Delta Basin, Nigeria.

2.
Heliyon ; 6(10): e05322, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33134589

ABSTRACT

Phytopesticides are human-friendly beside been easily accessible and bio-degradable, are therefore environmentally friendly compared to the synthetic pesticides which huge adverse effects on human, animals and the ecosystem. Plants are large reservoir of secondary metabolites largely untapped or under-tapped for use as pesticides. One problem associated with this is to identify plants which can be assessed and further exploited for this use. Borreria verticillata belongs to Rubiaceae, it is native to South Americas but gained popularity globally. It is known as a weed, showing resistance to many synthetic pesticides and can be grown on a wide range of soil types. B. verticillata is used traditionally against skin diseases such as eczema, infectious dermatitis and scabies. Its antimicrobial application is large and efficient as revealed by most authors. This article inclines to propose and offer current studies with information on the various application of this plant species against various microorganisms, thereby extending its use against plant parasitic nematodes which cause severe yield losses to numerous agricultural crops. Most search engines, journals and dissertation search engines i.e. Google scholar, pubmed, sciencedirect, scopus, web of science, springer, elsevier, like Open-thesis, OATD, ProQuest and EthOs were queried by employing titles such as B. verticillata, Borreria verticillata and biological activity of B. verticillata. The most synonymous name was queried too i.e. Spermacoce verticillata. This review suggests a main point about this resistant weed i.e. its significant antimicrobial activity. It further emphases the need exploits this useful effect against nematodes since they are microorganisms. Phytochemistry of the B. verticillata was gathered in this study and the compounds isolated from the plant i.e. terpenes, iridoids, flavonoids and alkaloids (29 compounds) further provide a basis for a significant antihelmintic effect. The review concludes on the need to extends its antimicrobial activity to sustainable agriculture. Since it is a very common plant in Nigeria, it is easily accessible to farmer protect their cultivations from plant-parasitic nematode attacks.

3.
Int J Phytoremediation ; 22(14): 1524-1537, 2020.
Article in English | MEDLINE | ID: mdl-32657133

ABSTRACT

In the quest for a sustainable environment and clean water resources, the efficacy of Ocimum gratissimum leave (OGL) for indigo carmine (IC) dye biosorption was studied in a batch technique. The physicochemical properties of OGL supported its suitability for biosorption studies. Of 92.6% removal efficiency was achieved at optimum conditions of pH 2, contact time 120 min, initial IC concentration 500 ppm, temperature 298 K, and 100 mg OGL dose. Kinetic data were best fitted to pseudo second-order (PSO) and the mechanism was pore diffusion governed as validated by sum of square error (SSE) and non-linear chi-square (χ 2). Freundlich isotherm model gave the best description at 298 K as supported by Halsey, Redlich-Peterson, and Fowler-Guggenheim confirming the heterogeneous nature of OGL and multilayer biosorption process. Langmuir Q max (77.52 mg g-1) surpassed those previously reported. SEM and EDX confirmed the reality of the biosorption process. Thermodynamic parameters (ΔH°, ΔS°, ΔG°, and Ea) affirm a feasible, spontaneous, exothermic, and randomness of the process. Results revealed that OGL is a potential and efficient environmentally benign, low cost, and sustainable biosorbents. It is therefore recommended as a bi-functional biosorbent for wastewater treatment.


Subject(s)
Ocimum , Water Pollutants, Chemical , Adsorption , Biodegradation, Environmental , Biomass , Carmine , Hydrogen-Ion Concentration , Indigo Carmine , Kinetics , Thermodynamics
4.
Turk J Pharm Sci ; 17(6): 599-609, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33389949

ABSTRACT

OBJECTIVES: Plant-mediated synthesis [silver (Ag) to form Ag nanoparticles (AgNPs)] is becoming progressively well accepted in many scientific and pharmaceutical fields. The aim of this study was to synthesize AgNPs using air-dried leaves of four neglected vegetables, i.e. Ceratotheca sesamoides, Ceiba pentandra, Crassocephalum crepidioides, and Launaea taraxacifolia. MATERIALS AND METHODS: Ultraviolet-visible (UV-Vis) spectroscopy, fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) were used for characterization. Cell stabilization membrane and lipoxidase assays were used to determine used to assess the antiinflammatory activities while 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) assays were used to assess the antioxidant activities of AgNPs [L. taraxacifolia-AgNPs, C. sesamoides Ag nanoparticles (CS-AgNPs), C. pentandra Ag nanoparticles (CP-AgNPs), and C. crepidioides AgNPs (CC-AgNPs)]. RESULTS: The UV-Vis spectra of the synthesized NPs displayed absorption bands at around 360-440 nm, which is a characteristic band for AgNPs. The SEM image showed that the AgNPs formed were spherical in morphology. CC-AgNPs exhibited the most significant inhibitory activity against human red blood cell membrane stabilizasyonu [median inhibitory concentration (IC50): 32.2 µg/mL] while CS-AgNPs displayed the most significant inhibitory activity against lipoxygenases (IC50: 32.8 µg/mL). CP-AgNPs exhibited the most significant antioxidant effect against both ABTS and DPPH (IC50: 5.5 and 6.4 µg/mL) when compared to ascorbic acid (IC50: 4.7 µg/mL). CONCLUSION: The synthesized AgNPs were found to be stable and the FTIR evidence suggested that the phytochemicals in the vegetables might have played an important role in the reduction and stabilization of AgNPs. This work showed that the synthesized AgNPs from non-cultivated vegetables can find relevance and application in health, drugs, food and environmental science. The evidences herein further confirmed their ethnopharmacological applications.

5.
Turk J Pharm Sci ; 16(4): 437-443, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32454747

ABSTRACT

OBJECTIVES: Vitex grandifolia belongs to family Lamiaceae; it consists of flowering plants and it is also called the mint family. The Yoruba people of southwest Nigeria called it "Oriri" or "Efo oriri". This plant is classified as an underutilized vegetable and little is known about its phytochemistry or its biological evaluations. MATERIALS AND METHODS: Methanol extracts of the dried leaves and stem of the plant were subjected to fractionation and isolation using vacuum layer and column chromatography methods. The structures of the compounds were elucidated using spectroscopic techniques including IR, 1D-, and 2D-NMR and by comparison with the data reported in the literature. They were evaluated in vitro for the inhibition of monoamine recombinant human MAO-A and -B and anti-inflammatory activities. RESULTS: Three known flavonoids were isolated from the methanolic extract of the leaves of V. grandifolia for the first time to the best of our knowledge, i.e. isoorientin (1), orientin (2), and isovitexin (3). Most of the isolated compounds showed selective inhibition of monoamine oxidase B, inhibition of MAO-B by isoorientin (1) and orientin (2) were 9-fold more potent (IC50 (µg/mL) of 11.08 and 11.04) compared to the inhibition of MAO-A (IC50 (µg/mL) of ˃100), while clorgyline and deprenyl were used as positive standards. The isolated flavonoids displayed good activity against the NF-ﭏb assay with IC50 (µg/mL) of 8.9, 12, and 18. This study establishes a link between the structure and the biological activities on the basis of the different patterns of substitution, particularly the C2=C3 double bond and the position of glucose moiety. CONCLUSION: This study is the first to establish the phytochemistry of the polar part of V. grandifolia and the anti-inflammatory and neuroprotective role of these isolated compounds.

6.
PeerJ ; 6: e5865, 2018.
Article in English | MEDLINE | ID: mdl-30397553

ABSTRACT

BACKGROUND: There is a growing interest in the green synthesis of silver nanoparticles (AgNPs) using plant extract because the technique is cost effective, eco-friendly and environmentally benign. This is phasing out the use of toxic and hazardous chemical earlier reported. Tithonia diversifolia is a wild sunflower that grows widely in the western part of Nigeria with a proven medicinal benefit. However, several studies carried out have left doubts on the basic operational parameters needed for the green synthesis of AgNPs. The objective of this work was to carry out green synthesis of AgNPs using T. diversifolia extract via an eco-friendly route through optimization of various operational parameters, characterization, and antimicrobial studies. METHOD: Green synthesis of TD-AgNPs was done via bottom-up approach through wet chemistry technique using environmentally benign T. diversifolia plant extract as both reducing and stabilizing agent. Phytochemical Screening of the TD plant extract was carried out. Experimental optimization of various operational parameters-reaction time, concentration, volume ratio, and temperature was investigated. TD-AgNPs were characterized by UV-Vis spectroscopy, FTIR Spectroscopy, SEM/energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Antimicrobial studies against multi drug resistant microorganisms (MDRM) were studied using the agar well diffusion method. RESULTS: This study reveals the importance of various operational parameters in the synthesis of TD-AgNPs. Excellent surface plasmon resonance peaks (SPR) were obtained at optimum experimental factors of 90 min reaction time under room temperature at 0.001M concentration with the volume ratio of 1:9 (TD extract:Ag ion solution). The synthesis was monitored using UV-Vis and maximum wavelength obtained at 430 nm was due to SPR. The morphology and elemental constituents obtained by TEM, SEM, and EDX results revealed a spherical shape of AgNPs with prominent peak of Ag at 3.0 kV in EDX spectrum. The crystallinity nature was confirmed by XRD studies. FTIR analysis proved presence of biomolecules functioning as reducing, stabilizing, and capping agents. These biomolecules were confirmed to be flavonoid, triterpenes, and saponin from phytochemical screening. The antimicrobial studies of TD-AgNPs were tested against MDRM-Escherichia coli, Salmonella typhi, Salmonella enterica, and Bacillus subtilis. DISCUSSION: The variation of reaction time, temperature, concentration, and volume ratio played substantive and fundamental roles in the synthesis of TD-AgNPs. A good dispersion of small spherical size between 10 and 26 nm was confirmed by TEM and SEM. A dual action mechanism of anti-microbial effects was provided by TD-AgNPs which are bactericidal and membrane-disruption. Based on the antimicrobial activity, the synthesized TD-AgNPs could find good application in medicine, pharmaceutical, biotechnology, and food science.

SELECTION OF CITATIONS
SEARCH DETAIL
...