Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Oncol ; 13: 1157646, 2023.
Article in English | MEDLINE | ID: mdl-37188190

ABSTRACT

Diffuse Large B-cell Lymphoma (DLBCL) is the most common type of aggressive lymphoma. Approximately 60% of fit patients achieve curation with immunochemotherapy, but the remaining patients relapse or have refractory disease, which predicts a short survival. Traditionally, risk stratification in DLBCL has been based on scores that combine clinical variables. Other methodologies have been developed based on the identification of novel molecular features, such as mutational profiles and gene expression signatures. Recently, we developed the LymForest-25 profile, which provides a personalized survival risk prediction based on the integration of transcriptomic and clinical features using an artificial intelligence system. In the present report, we studied the relationship between the molecular variables included in LymForest-25 in the context of the data released by the REMoDL-B trial, which evaluated the addition of bortezomib to the standard treatment (R-CHOP) in the upfront setting of DLBCL. For this, we retrained the machine learning model of survival on the group of patients treated with R-CHOP (N=469) and then made survival predictions for those patients treated with bortezomib plus R-CHOP (N=459). According to these results, the RB-CHOP scheme achieved a 30% reduction in the risk of progression or death for the 50% of DLBCL patients at higher molecular risk (p-value 0.03), potentially expanding the effectiveness of this treatment to a wider patient population as compared with other previously defined risk groups.

2.
Hemasphere ; 6(4): e706, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35392483

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Despite notable therapeutic advances in the last decades, 30%-40% of affected patients develop relapsed or refractory disease that frequently precludes an infamous outcome. With the advent of new therapeutic options, it becomes necessary to predict responses to the standard treatment based on rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). In a recent communication, we presented a new machine learning model (LymForest-25) that was based on 25 clinical, biochemical, and gene expression variables. LymForest-25 achieved high survival prediction accuracy in patients with DLBCL treated with upfront immunochemotherapy. In this study, we aimed to evaluate the performance of the different features that compose LymForest-25 in a new UK-based cohort, which contained 481 patients treated with upfront R-CHOP for whom clinical, biochemical and gene expression information for 17 out of 19 transcripts were available. Additionally, we explored potential improvements based on the integration of other gene expression signatures and mutational clusters. The validity of the LymForest-25 gene expression signature was confirmed, and indeed it achieved a substantially greater precision in the estimation of mortality at 6 months and 1, 2, and 5 years compared with the cell-of-origin (COO) plus molecular high-grade (MHG) classification. Indeed, this signature was predictive of survival within the MHG and all COO subgroups, with a particularly high accuracy in the "unclassified" group. Integration of this signature with the International Prognostic Index (IPI) score provided the best survival predictions. However, the increased performance of molecular models with the IPI score was almost exclusively restricted to younger patients (<70 y). Finally, we observed a tendency towards an improved performance by combining LymForest-25 with the LymphGen mutation-based classification. In summary, we have validated the predictive capacity of LymForest-25 and expanded the potential for improvement with mutation-based prognostic classifications.

3.
Leukemia ; 35(10): 2924-2935, 2021 10.
Article in English | MEDLINE | ID: mdl-34007046

ABSTRACT

Multiple myeloma (MM) remains mostly an incurable disease with a heterogeneous clinical evolution. Despite the availability of several prognostic scores, substantial room for improvement still exists. Promising results have been obtained by integrating clinical and biochemical data with gene expression profiling (GEP). In this report, we applied machine learning algorithms to MM clinical and RNAseq data collected by the CoMMpass consortium. We created a 50-variable random forests model (IAC-50) that could predict overall survival with high concordance between both training and validation sets (c-indexes, 0.818 and 0.780). This model included the following covariates: patient age, ISS stage, serum B2-microglobulin, first-line treatment, and the expression of 46 genes. Survival predictions for each patient considering the first line of treatment evidenced that those individuals treated with the best-predicted drug combination were significantly less likely to die than patients treated with other schemes. This was particularly important among patients treated with a triplet combination including bortezomib, an immunomodulatory drug (ImiD), and dexamethasone. Finally, the model showed a trend to retain its predictive value in patients with high-risk cytogenetics. In conclusion, we report a predictive model for MM survival based on the integration of clinical, biochemical, and gene expression data with machine learning tools.


Subject(s)
Algorithms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Machine Learning , Multiple Myeloma/mortality , Cohort Studies , Female , Follow-Up Studies , Gene Expression Profiling , Humans , Male , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Prognosis , Survival Rate
4.
PLoS One ; 16(5): e0248886, 2021.
Article in English | MEDLINE | ID: mdl-33945543

ABSTRACT

B-cell lymphoproliferative disorders exhibit a diverse spectrum of diagnostic entities with heterogeneous behaviour. Multiple efforts have focused on the determination of the genomic drivers of B-cell lymphoma subtypes. In the meantime, the aggregation of diverse tumors in pan-cancer genomic studies has become a useful tool to detect new driver genes, while enabling the comparison of mutational patterns across tumors. Here we present an integrated analysis of 354 B-cell lymphoid disorders. 112 recurrently mutated genes were discovered, of which KMT2D, CREBBP, IGLL5 and BCL2 were the most frequent, and 31 genes were putative new drivers. Mutations in CREBBP, TNFRSF14 and KMT2D predominated in follicular lymphoma, whereas those in BTG2, HTA-A and PIM1 were more frequent in diffuse large B-cell lymphoma. Additionally, we discovered 31 significantly mutated protein networks, reinforcing the role of genes such as CREBBP, EEF1A1, STAT6, GNA13 and TP53, but also pointing towards a myriad of infrequent players in lymphomagenesis. Finally, we report aberrant expression of oncogenes and tumor suppressors associated with novel noncoding mutations (DTX1 and S1PR2), and new recurrent copy number aberrations affecting immune check-point regulators (CD83, PVR) and B-cell specific genes (TNFRSF13C). Our analysis expands the number of mutational drivers of B-cell lymphoid neoplasms, and identifies several differential somatic events between disease subtypes.


Subject(s)
Genome, Human , Leukemia, B-Cell/genetics , Lymphoma, B-Cell/genetics , Mutation , CREB-Binding Protein/genetics , DNA-Binding Proteins/genetics , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Gene Regulatory Networks , Humans , Neoplasm Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Receptors, Tumor Necrosis Factor, Member 14/genetics , STAT6 Transcription Factor/genetics , Tumor Suppressor Protein p53/genetics
5.
Cancers (Basel) ; 13(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809641

ABSTRACT

There is growing evidence indicating the implication of germline variation in cancer predisposition and prognostication. Here, we describe an analysis of likely disruptive rare variants across the genomes of 726 patients with B-cell lymphoid neoplasms. We discovered a significant enrichment for two genes in rare dysfunctional variants, both of which participate in the regulation of oxidative stress pathways (CHMP6 and GSTA4). Additionally, we detected 1675 likely disrupting variants in genes associated with cancer, of which 44.75% were novel events and 7.88% were protein-truncating variants. Among these, the most frequently affected genes were ATM, BIRC6, CLTCL1A, and TSC2. Homozygous or germline double-hit variants were detected in 28 cases, and coexisting somatic events were observed in 17 patients, some of which affected key lymphoma drivers such as ATM, KMT2D, and MYC. Finally, we observed that variants in six different genes were independently associated with shorter survival in CLL. Our study results support an important role for rare germline variation in the pathogenesis and prognosis of B-cell lymphoid neoplasms.

6.
PLoS One ; 16(2): e0247093, 2021.
Article in English | MEDLINE | ID: mdl-33592069

ABSTRACT

BACKGROUND: FLT3 mutation is present in 25-30% of all acute myeloid leukemias (AML), and it is associated with adverse outcome. FLT3 inhibitors have shown improved survival results in AML both as upfront treatment and in relapsed/refractory disease. Curiously, a variable proportion of wild-type FLT3 patients also responded to these drugs. METHODS: We analyzed 6 different transcriptomic datasets of AML cases. Differential expression between mutated and wild-type FLT3 AMLs was performed with the Wilcoxon-rank sum test. Hierarchical clustering was used to identify FLT3-mutation like AMLs. Finally, enrichment in recurrent mutations was performed with the Fisher's test. RESULTS: A FLT3 mutation-like gene expression pattern was identified among wild-type FLT3 AMLs. This pattern was highly enriched in NPM1 and DNMT3A mutants, and particularly in combined NPM1/DNMT3A mutants. CONCLUSIONS: We identified a FLT3 mutation-like gene expression pattern in AML which was highly enriched in NPM1 and DNMT3A mutations. Future analysis about the predictive role of this biomarker among wild-type FLT3 patients treated with FLT3 inhibitors is envisaged.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia/genetics , Mutation/genetics , fms-Like Tyrosine Kinase 3/genetics , Biomarkers/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Gene Expression Profiling/methods , Humans , Nuclear Proteins/genetics , Nucleophosmin , Staurosporine/analogs & derivatives , Staurosporine/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
7.
Front Oncol ; 11: 705010, 2021.
Article in English | MEDLINE | ID: mdl-35083135

ABSTRACT

Follicular Lymphoma (FL) has a 10-year mortality rate of 20%, and this is mostly related to lymphoma progression and transformation to higher grades. In the era of personalized medicine it has become increasingly important to provide patients with an optimal prediction about their expected outcomes. The objective of this work was to apply machine learning (ML) tools on gene expression data in order to create individualized predictions about survival in patients with FL. Using data from two different studies, we were able to create a model which achieved good prediction accuracies in both cohorts (c-indexes of 0.793 and 0.662 in the training and test sets). Integration of this model with m7-FLIPI and age rendered high prediction accuracies in the test set (cox c-index 0.79), and a simplified approach identified 4 groups with remarkably different outcomes in terms of survival. Importantly, one of the groups comprised 27.35% of patients and had a median survival of 4.64 years. In summary, we have created a gene expression-based individualized predictor of overall survival in FL that can improve the predictions of the m7-FLIPI score.

8.
BMC Cancer ; 20(1): 1017, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33087075

ABSTRACT

BACKGROUND: Thirty to forty percent of patients with Diffuse Large B-cell Lymphoma (DLBCL) have an adverse clinical evolution. The increased understanding of DLBCL biology has shed light on the clinical evolution of this pathology, leading to the discovery of prognostic factors based on gene expression data, genomic rearrangements and mutational subgroups. Nevertheless, additional efforts are needed in order to enable survival predictions at the patient level. In this study we investigated new machine learning-based models of survival using transcriptomic and clinical data. METHODS: Gene expression profiling (GEP) of in 2 different publicly available retrospective DLBCL cohorts were analyzed. Cox regression and unsupervised clustering were performed in order to identify probes associated with overall survival on the largest cohort. Random forests were created to model survival using combinations of GEP data, COO classification and clinical information. Cross-validation was used to compare model results in the training set, and Harrel's concordance index (c-index) was used to assess model's predictability. Results were validated in an independent test set. RESULTS: Two hundred thirty-three and sixty-four patients were included in the training and test set, respectively. Initially we derived and validated a 4-gene expression clusterization that was independently associated with lower survival in 20% of patients. This pattern included the following genes: TNFRSF9, BIRC3, BCL2L1 and G3BP2. Thereafter, we applied machine-learning models to predict survival. A set of 102 genes was highly predictive of disease outcome, outperforming available clinical information and COO classification. The final best model integrated clinical information, COO classification, 4-gene-based clusterization and the expression levels of 50 individual genes (training set c-index, 0.8404, test set c-index, 0.7942). CONCLUSION: Our results indicate that DLBCL survival models based on the application of machine learning algorithms to gene expression and clinical data can largely outperform other important prognostic variables such as disease stage and COO. Head-to-head comparisons with other risk stratification models are needed to compare its usefulness.


Subject(s)
Biomarkers, Tumor/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Lymphoma, Large B-Cell, Diffuse/mortality , Adaptor Proteins, Signal Transducing/genetics , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Male , Microarray Analysis , Middle Aged , Prognosis , RNA-Binding Proteins/genetics , Retrospective Studies , Survival Analysis , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Unsupervised Machine Learning , bcl-X Protein/genetics
9.
Sci Rep ; 10(1): 2407, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32051441

ABSTRACT

Mutations in non-coding DNA regions are increasingly recognized as cancer drivers. These mutations can modify gene expression in cis or by inducing high-order chormatin structure modifications with long-range effects. Previous analysis reported the detection of recurrent and functional non-coding DNA mutations in the chronic lymphocytic leukemia (CLL) genome, such as those in the 3' untranslated region of NOTCH1 and in the PAX5 super-enhancer. In this report, we used whole genome sequencing data produced by the International Cancer Genome Consortium in order to analyze regions with previously reported regulatory activity. This approach enabled the identification of numerous recurrently mutated regions that were frequently positioned in the proximity of genes involved in immune and oncogenic pathways. By correlating these mutations with expression of their nearest genes, we detected significant transcriptional changes in genes such as PHF2 and S1PR2. More research is needed to clarify the function of these mutations in CLL, particularly those found in intergenic regions.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Regulatory Sequences, Nucleic Acid , 3' Untranslated Regions , DNA Mutational Analysis , DNA, Intergenic/genetics , Homeodomain Proteins/genetics , Humans , PAX5 Transcription Factor/genetics , Receptor, Notch1/genetics , Sphingosine-1-Phosphate Receptors/genetics , Whole Genome Sequencing
10.
J Oncol ; 2019: 9453539, 2019.
Article in English | MEDLINE | ID: mdl-31827514

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder characterized by its heterogeneous clinical evolution. Despite the discovery of the most frequent cytogenomic drivers of disease during the last decade, new efforts are needed in order to improve prognostication. In this study, we used gene expression data of CLL samples in order to discover novel transcriptomic patterns associated with patient survival. We observed that a 3-gene expression signature composed of SCGB2A1, KLF4, and PPP1R14B differentiate a group of circa 5% of cases with short survival. This effect was independent of the main cytogenetic markers of adverse prognosis. Finally, this finding was reproduced in an independent retrospective cohort. We believe that this small gene expression pattern will be useful for CLL prognostication and its association with CLL response to novel drugs should be explored in the future.

11.
Front Genet ; 10: 854, 2019.
Article in English | MEDLINE | ID: mdl-31616467

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most frequent lymphoproliferative syndrome in Western countries, and it is characterized by recurrent large genomic rearrangements. During the last decades, array techniques have expanded our knowledge about CLL's karyotypic aberrations. The advent of large sequencing databases expanded our knowledge cancer genomics to an unprecedented resolution and enabled the detection of small-scale structural aberrations in the cancer genome. In this study, we have performed exome-sequencing-based copy number aberration (CNA) and loss of heterozygosity (LOH) analysis in order to detect new recurrent structural aberrations. We describe 54 recurrent focal CNAs enriched in cancer-related pathways, and their association with gene expression and clinical evolution. Furthermore, we discovered recurrent large copy number neutral LOH events affecting key driver genes, and we recapitulate most of the large CNAs that characterize the CLL genome. These results provide "proof-of-concept" evidence supporting the existence of new genes involved in the pathogenesis of CLL.

13.
BMC Cancer ; 19(1): 515, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31142279

ABSTRACT

BACKGROUND: Chronic Lymphocytic Leukemia (CLL) is the most frequent lymphoproliferative disorder in western countries and is characterized by a remarkable clinical heterogeneity. During the last decade, multiple genomic studies have identified a myriad of somatic events driving CLL proliferation and aggressivity. Nevertheless, and despite the mounting evidence of inherited risk for CLL development, the existence of germline variants associated with clinical outcomes has not been addressed in depth. METHODS: Exome sequencing data from control leukocytes of CLL patients involved in the International Cancer Genome Consortium (ICGC) was used for genotyping. Cox regression was used to detect variants associated with clinical outcomes. Gene and pathways level associations were also calculated. RESULTS: Single nucleotide polymorphisms in PPP4R2 and MAP3K4 were associated with earlier treatment need. A gene-level analysis evidenced a significant association of RIPK3 with both treatment need and survival. Furthermore, germline variability in pathways such as apoptosis, cell-cycle, pentose phosphate, GNα13 and Nitric oxide was associated with overall survival. CONCLUSION: Our results support the existence of inherited conditionants of CLL evolution and points towards genes and pathways that may results useful as biomarkers of disease outcome. More research is needed to validate these findings.


Subject(s)
Biomarkers, Tumor/genetics , Exome Sequencing/methods , Germ-Line Mutation , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Female , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , MAP Kinase Kinase Kinase 4/genetics , Male , Phosphoprotein Phosphatases/genetics , Survival Analysis
14.
Front Oncol ; 9: 79, 2019.
Article in English | MEDLINE | ID: mdl-30828568

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most frequent lymphoproliferative syndrome in western countries. CLL evolution is frequently indolent, and treatment is mostly reserved for those patients with signs or symptoms of disease progression. In this work, we used RNA sequencing data from the International Cancer Genome Consortium CLL cohort to determine new gene expression patterns that correlate with clinical evolution.We determined that a 290-gene expression signature, in addition to immunoglobulin heavy chain variable region (IGHV) mutation status, stratifies patients into four groups with notably different time to first treatment. This finding was confirmed in an independent cohort. Similarly, we present a machine learning algorithm that predicts the need for treatment within the first 5 years following diagnosis using expression data from 2,198 genes. This predictor achieved 90% precision and 89% accuracy when classifying independent CLL cases. Our findings indicate that CLL progression risk largely correlates with particular transcriptomic patterns and paves the way for the identification of high-risk patients who might benefit from prompt therapy following diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...