Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1332175, 2024.
Article in English | MEDLINE | ID: mdl-38374920

ABSTRACT

Pseudorabies virus (PRV), a herpesvirus responsible for Aujeszky's disease, causes high mortality in swine populations. To develop effective and novel antiviral strategies, it is essential to understand the mechanism of entry used by PRV to infect its host. Viruses have different ways of entering host cells. Among others, they can use endocytosis, a fundamental cellular process by which substances from the external environment are internalized into the cell. This process is classified into clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE), depending on the role of clathrin. Although the involvement of cholesterol-rich lipid rafts in the entry of PRV has already been described, the importance of other endocytic pathways involving clathrin remains unexplored to date. Here, we characterize the role of CME in PRV entry into the PK15 swine cell line. By using CME inhibitory drugs, we report a decrease in PRV infection when the CME pathway is blocked. We also perform the shRNA knockdown of the µ-subunit of the adaptor protein AP-2 (AP2M1), which plays an important role in the maturation of clathrin-coated vesicles, and the infection is greatly reduced when this subunit is knocked down. Furthermore, transmission electron microscopy images report PRV virions inside clathrin-coated vesicles. Overall, this study suggests for the first time that CME is a mechanism used by PRV to enter PK15 cells and provides valuable insights into its possible routes of entry.

2.
Front Microbiol ; 14: 1185504, 2023.
Article in English | MEDLINE | ID: mdl-37206325

ABSTRACT

The emergent human coronavirus SARS-CoV-2 and its resistance to current drugs makes the need for new potent treatments for COVID-19 patients strongly necessary. Dextran sulfate (DS) polysaccharides have long demonstrated antiviral activity against different enveloped viruses in vitro. However, their poor bioavailability has led to their abandonment as antiviral candidates. Here, we report for the first time the broad-spectrum antiviral activity of a DS-based extrapolymeric substance produced by the lactic acid bacterium Leuconostoc mesenteroides B512F. Time of addition assays with SARS-CoV-2 pseudoviruses in in vitro models confirm the inhibitory activity of DSs in the early stages of viral infection (viral entry). In addition, this exopolysaccharide substance also reports broad-spectrum antiviral activity against several enveloped viruses such as SARS-CoV-2, HCoV229E, HSV-1, in in vitro models and in human lung tissue. The toxicity and antiviral capacity of DS from L. mesenteroides was tested in vivo in mouse models which are susceptible to SARS-CoV-2 infection. The described DS, administered by inhalation, a new route of administration for these types of polymers, shows strong inhibition of SARS-CoV-2 infection in vivo, significantly reducing animal mortality and morbidity at non-toxic doses. Therefore, we suggest that it may be considered as a potential candidate for antiviral therapy against SARS-CoV-2.

3.
Viruses ; 15(4)2023 04 15.
Article in English | MEDLINE | ID: mdl-37112952

ABSTRACT

A limited number of effective therapies are currently available to treat human coronavirus SARS-CoV-2 and other human coronaviruses, which are responsible for nearly a third of global cases of the common cold. The possibility of new emerging coronaviruses demands powerful new antiviral strategies. Lactoferrin is a well-known protein that possesses anti-inflammatory and immunomodulatory activities, and it has previously shown antiviral activity against several viruses, including SARS-CoV-2. To increase this antiviral activity, here we present bovine liposomal lactoferrin. Liposomal encapsulation of the compound was proven to increase permeability, bioavailability, and time release. In the present work, we compare the antiviral activity of free and liposomal bovine lactoferrin against HCoV229E and SARS-CoV-2 in vitro and in human primary bronchial epithelial cells, and we demonstrated that the liposomal form exerts a more potent antiviral activity than its free form at non-cytotoxic doses.


Subject(s)
COVID-19 , Coronavirus 229E, Human , RNA Viruses , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2 , Lactoferrin/pharmacology , Liposomes
4.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36362429

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is a neurotropic virus that occasionally may spread to the central nervous system (CNS), being the most common cause of sporadic encephalitis. One of the main neurovirulence factors of HSV-1 is the protein ICP34.5, which although it initially seems to be relevant only in neuronal infections, it can also promote viral replication in non-neuronal cells. New ICP34.5 functions have been discovered during recent years, and some of them have been questioned. This review describes the mechanisms of ICP34.5 to control cellular antiviral responses and debates its most controversial functions. One of the most discussed roles of ICP34.5 is autophagy inhibition. Although autophagy is considered a defense mechanism against viral infections, current evidence suggests that this antiviral function is only one side of the coin. Different types of autophagic pathways interact with HSV-1 impairing or enhancing the infection, and both the virus and the host cell modulate these pathways to tip the scales in its favor. In this review, we summarize the recent progress on the interplay between autophagy and HSV-1, focusing on the intricate role of ICP34.5 in the modulation of this pathway to fight the battle against cellular defenses.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Herpesvirus 1, Human/physiology , Viral Proteins/metabolism , Autophagy/physiology , Virus Replication , Antiviral Agents/metabolism , Herpes Simplex/metabolism
5.
Pharmaceutics ; 14(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36365182

ABSTRACT

The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted the strong need for new virucidal treatments. In this sense, the use of photodynamic therapy (PDT) with white light, to take advantage of the sunlight, is a potent strategy for decreasing the virulence and pathogenicity of the virus. Here, we report the virucidal effect of PDT based on Hypericum extract (HE) in combination with white light, which exhibits an inhibitory activity of the human coronavirus HCoV-229E on hepatocarcinoma Huh-7 cells. Moreover, despite continuous exposure to white light, HE has long durability, being able to maintain the prevention of viral infection. Given its potent in vitro virucidal capacity, we propose HE in combination with white light as a promising candidate to fight against SARS-CoV-2 as a virucidal compound.

6.
Viruses ; 14(6)2022 06 19.
Article in English | MEDLINE | ID: mdl-35746808

ABSTRACT

Sulfated polysaccharides and other polyanions have been promising candidates in antiviral research for decades. These substances gained attention as antivirals when they demonstrated a high inhibitory effect in vitro against human immunodeficiency virus (HIV) and other enveloped viruses. However, that initial interest was followed by wide skepticism when in vivo assays refuted the initial results. In this paper we review the use of sulfated polysaccharides, and other polyanions, in antiviral therapy, focusing on extracellular polymeric substances (EPSs). We maintain that, in spite of those early difficulties, the use of polyanions and, specifically, the use of EPSs, in antiviral therapy should be reconsidered. We base our claim in several points. First, early studies showed that the main disadvantage of sulfated polysaccharides and polyanions is their low bioavailability, but this difficulty can be overcome by the use of adequate administration strategies, such as nebulization of aerosols to gain access to respiratory airways. Second, several sulfated polysaccharides and EPSs have demonstrated to be non-toxic in animals. Finally, these macromolecules are non-specific and therefore they might be used against different variants or even different viruses.


Subject(s)
Antiviral Agents , HIV Infections , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Extracellular Polymeric Substance Matrix , HIV Infections/drug therapy , Polysaccharides/pharmacology
7.
Viruses ; 13(12)2021 12 15.
Article in English | MEDLINE | ID: mdl-34960791

ABSTRACT

Pseudorabies virus (PRV) infection of swine can produce Aujeszky's disease, which causes neurological, respiratory, and reproductive symptoms, leading to significant economic losses in the swine industry. Although humans are not the natural hosts of PRV, cases of human encephalitis and endophthalmitis caused by PRV infection have been reported between animals and workers. Currently, a lack of specific treatments and the emergence of new PRV strains against which existing vaccines do not protect makes the search for effective antiviral drugs essential. As an alternative to traditional nucleoside analogues such as acyclovir (ACV), we studied the antiviral effect of valpromide (VPD), a compound derived from valproic acid, against PRV infection in the PK15 swine cell line and the neuroblastoma cell line Neuro-2a. First, the cytotoxicity of ACV and VPD in cells was compared, demonstrating that neither compound was cytotoxic at a specific concentration range after 24 h exposure. Furthermore, the lack of direct virucidal effect of VPD outside of an infected cell environment was demonstrated. Finally, VPD was shown to have an antiviral effect on the viral production of two strains of pseudorabies virus (wild type NIA-3 and recombinant PRV-XGF) at the concentrations ranging from 0.5 to 1.5 mM, suggesting that VPD could be a suitable alternative to nucleoside analogues as an antiherpetic drug against Aujeszky's disease.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Suid/drug effects , Pseudorabies/drug therapy , Valproic Acid/analogs & derivatives , Valproic Acid/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Mice , Neuroblastoma , Pseudorabies/virology , Swine , Swine Diseases/drug therapy , Swine Diseases/virology
8.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072259

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that can infect the peripheral and central nervous systems, and it has been implicated in demyelinating and neurodegenerative processes. Transposable elements (TEs) are DNA sequences that can move from one genomic location to another. TEs have been linked to several diseases affecting the central nervous system (CNS), including multiple sclerosis (MS), a demyelinating disease of unknown etiology influenced by genetic and environmental factors. Exogenous viral transactivators may activate certain retrotransposons or class I TEs. In this context, several herpesviruses have been linked to MS, and one of them, HSV-1, might act as a risk factor by mediating processes such as molecular mimicry, remyelination, and activity of endogenous retroviruses (ERVs). Several herpesviruses have been involved in the regulation of human ERVs (HERVs), and HSV-1 in particular can modulate HERVs in cells involved in MS pathogenesis. This review exposes current knowledge about the relationship between HSV-1 and human ERVs, focusing on their contribution as a risk factor for MS.


Subject(s)
Demyelinating Diseases/etiology , Disease Susceptibility , Endogenous Retroviruses/physiology , Herpes Simplex/complications , Herpes Simplex/virology , Herpesvirus 1, Human , Animals , Biological Evolution , DNA Transposable Elements , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Endogenous Retroviruses/classification , Humans , Multiple Sclerosis/etiology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Retroelements
9.
Viruses ; 13(3)2021 03 23.
Article in English | MEDLINE | ID: mdl-33807081

ABSTRACT

The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted the strong need for new disinfection systems. Evidence has proven that airborne transmission is an important route of spreading for this virus. Therefore, this short communication introduces CLODOS Technology®, a novel strategy to disinfect contaminated surfaces. It is a product based on stable and 99% pure chlorine dioxide, already certified as a bactericide, fungicide and virucide against different pathogens. In this study, CLODOS Technology®, by direct contact or thermonebulization, showed virucidal activity against the human coronavirus HCoV-229E at non-cytotoxic doses. Different conditions such as nebulization, exposure time and product concentration have been tested to standardize and optimize this new feasible method for disinfection.


Subject(s)
Coronavirus 229E, Human/drug effects , Disinfectants/pharmacology , Disinfection/methods , Cell Line , Chlorine Compounds/analysis , Chlorine Compounds/pharmacology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disinfectants/analysis , Disinfection/instrumentation , Humans , Nebulizers and Vaporizers , Oxides/analysis , Oxides/pharmacology
10.
Front Microbiol ; 12: 631274, 2021.
Article in English | MEDLINE | ID: mdl-33613502

ABSTRACT

Membrane rafts are dynamic, small (10-200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.

11.
Int J Mol Sci ; 21(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266211

ABSTRACT

It is being increasingly demonstrated that extracellular vesicles (EVs) are deeply involved in the physiology of the central nervous system (CNS). Processes such as synaptic activity, neuron-glia communication, myelination and immune response are modulated by EVs. Likewise, these vesicles may participate in many pathological processes, both as triggers of disease or, on the contrary, as mechanisms of repair. EVs play relevant roles in neurodegenerative disorders such as Alzheimer's or Parkinson's diseases, in viral infections of the CNS and in demyelinating pathologies such as multiple sclerosis (MS). This review describes the involvement of these membrane vesicles in major demyelinating diseases, including MS, neuromyelitis optica, progressive multifocal leukoencephalopathy and demyelination associated to herpesviruses.


Subject(s)
Central Nervous System/pathology , Demyelinating Diseases/pathology , Extracellular Vesicles/metabolism , Animals , Endogenous Retroviruses/physiology , Humans , Models, Biological
12.
Viruses ; 12(12)2020 11 26.
Article in English | MEDLINE | ID: mdl-33256172

ABSTRACT

Herpes simplex viruses (HSVs) are neurotropic viruses with broad host range whose infections cause considerable health problems in both animals and humans. In fact, 67% of the global population under the age of 50 are infected with HSV-1 and 13% have clinically recurrent HSV-2 infections. The most prescribed antiherpetics are nucleoside analogues such as acyclovir, but the emergence of mutants resistant to these drugs and the lack of available vaccines against human HSVs has led to an imminent need for new antivirals. Valproic acid (VPA) is a branched short-chain fatty acid clinically used as a broad-spectrum antiepileptic drug in the treatment of neurological disorders, which has shown promising antiviral activity against some herpesviruses. Moreover, its amidic derivatives valpromide and valnoctamide also share this antiherpetic activity. This review summarizes the current research on the use of VPA and its amidic derivatives as alternatives to traditional antiherpetics in the fight against HSV infections.


Subject(s)
Alphaherpesvirinae/drug effects , Amides/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Valproic Acid/analogs & derivatives , Valproic Acid/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure
13.
Int J Mol Sci ; 21(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708697

ABSTRACT

Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous systems. After primary infection in epithelial cells, HSV-1 spreads retrogradely to the peripheral nervous system (PNS), where it establishes a latent infection in the trigeminal ganglia (TG). The virus can reactivate from the latent state, traveling anterogradely along the axon and replicating in the local surrounding tissue. Occasionally, HSV-1 may spread trans-synaptically from the TG to the brainstem, from where it may disseminate to higher areas of the central nervous system (CNS). It is not completely understood how HSV-1 reaches the CNS, although the most accepted idea is retrograde transport through the trigeminal or olfactory tracts. Once in the CNS, HSV-1 may induce demyelination, either as a direct trigger or as a risk factor, modulating processes such as remyelination, regulation of endogenous retroviruses, or molecular mimicry. In this review, we describe the current knowledge about the involvement of HSV-1 in demyelination, describing the pathways used by this herpesvirus to spread throughout the CNS and discussing the data that suggest its implication in demyelinating processes.


Subject(s)
Central Nervous System/virology , Demyelinating Diseases/virology , Herpes Simplex/complications , Herpesvirus 1, Human/physiology , Animals , Central Nervous System/pathology , Demyelinating Diseases/etiology , Demyelinating Diseases/pathology , Herpes Simplex/pathology , Herpes Simplex/virology , Host-Pathogen Interactions , Humans
14.
Viruses ; 12(7)2020 07 07.
Article in English | MEDLINE | ID: mdl-32645983

ABSTRACT

Endocytosis is a pathway used by viruses to enter cells that can be classified based on the proteins involved, such as dynamin, clathrin or caveolin. Although the entry of herpes simplex type 1 (HSV-1) by endocytosis has been documented in different cell types, its dependence on clathrin has not been described whereas its dependence on dynamin has been shown according to the cell line used. The present work shows how clathrin-mediated endocytosis (CME) is one way that HSV-1 infects the human oligodendroglial (HOG) cell line. Partial dynamin inhibition using dynasore revealed a relationship between decrease of infection and dynamin inhibition, measured by viral titration and immunoblot. Co-localization between dynamin and HSV-1 was verified by immunofluorescence at the moment of viral entry into the cell. Inhibition by chlorpromazine revealed that viral progeny also decreased when clathrin was partially inhibited in our cell line. RT-qPCR of immediately early viral genes, specific entry assays and electron microscopy all confirmed clathrin's participation in HSV-1 entry into HOG cells. In contrast, caveolin entry assays showed no effect on the entry of this virus. Therefore, our results suggest the participation of dynamin and clathrin during endocytosis of HSV-1 in HOG cells.


Subject(s)
Caveolins/metabolism , Clathrin/metabolism , Dynamins/metabolism , Endocytosis/physiology , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Oligodendroglia/virology , Virus Internalization , Cell Line , Chlorpromazine/pharmacology , Endocytosis/drug effects , Herpes Simplex/metabolism , Humans , Hydrazones/pharmacology , Microscopy, Electron , Microscopy, Fluorescence , Nystatin/pharmacology , Real-Time Polymerase Chain Reaction
15.
Viruses ; 12(6)2020 06 08.
Article in English | MEDLINE | ID: mdl-32521696

ABSTRACT

Viral spread by both enveloped and non-enveloped viruses may be mediated by extracellular vesicles (EVs), including microvesicles (MVs) and exosomes. These secreted vesicles have been demonstrated to be an efficient mechanism that viruses can use to enter host cells, enhance spread or evade the host immune response. However, the complex interplay between viruses and EVs gives rise to antagonistic biological tasks-to benefit the viruses, enhancing infection and interfering with the immune system or to benefit the host, by mediating anti-viral responses. Exosomes from cells infected with herpes simplex type 1 (HSV-1) may transport viral and host transcripts, proteins and innate immune components. This virus may also use MVs to expand its tropism and evade the host immune response. This review aims to describe the current knowledge about EVs and their participation in viral infection, with a specific focus on the role of exosomes and MVs in herpesvirus infections, particularly that of HSV-1.


Subject(s)
Antiviral Agents/pharmacology , Extracellular Vesicles/virology , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Animals , Extracellular Vesicles/genetics , Extracellular Vesicles/immunology , Herpes Simplex/genetics , Herpes Simplex/immunology , Herpesvirus 1, Human/genetics , Humans
16.
Methods Mol Biol ; 2060: 305-317, 2020.
Article in English | MEDLINE | ID: mdl-31617186

ABSTRACT

Extracellular vesicles (EVs) are secreted membrane vesicles, derived from endosomes or from the plasma membrane, which have been isolated from most cell types and biological fluids. Although EVs are highly heterogeneous and their classification is complex, two major categories can be distinguished: microvesicles (MVs), which derive from the shedding of the plasma membrane, and exosomes, which correspond to intraluminal vesicles released to the extracellular milieu upon fusion of multivesicular bodies (MVBs) with the plasma membrane. Cells infected with viruses may secrete MVs containing viral proteins, RNAs and, in some instances, infectious virions. A recent study carried out by our laboratory has shown that MVs released by cells infected with HSV-1 contained virions and were endocytosed by naïve cells leading to a productive infection. This suggests that HSV-1 may use MVs for spreading, expanding its tropism and evading the host immune response. Here we describe in detail the methods used to isolate and analyse the MVs released from HSV-1-infected cells.


Subject(s)
Cell-Derived Microparticles , Herpes Simplex/metabolism , Herpesvirus 1, Human , Cell Line , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/virology , Herpes Simplex/pathology , Herpesvirus 1, Human/chemistry , Herpesvirus 1, Human/isolation & purification , Herpesvirus 1, Human/metabolism , Humans
17.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31748392

ABSTRACT

Myelin and lymphocyte protein (MAL) is a tetraspan integral membrane protein that resides in detergent-insoluble membrane fractions enriched in condensed membranes. MAL is expressed in oligodendrocytes, in Schwann cells, where it is essential for the stability of myelin, and at the apical membrane of epithelial cells, where it has a critical role in transport. In T lymphocytes, MAL is found at the immunological synapse and plays a crucial role in exosome secretion. However, no involvement of MAL in viral infections has been reported so far. Here, we show that herpes simplex virus 1 (HSV-1) virions travel in association with MAL-positive structures to reach the end of cellular processes, which contact uninfected oligodendrocytes. Importantly, the depletion of MAL led to a significant decrease in infection, with a drastic reduction in the number of lytic plaques in MAL-silenced cells. These results suggest a significant role for MAL in viral spread at cell contacts. The participation of MAL in the cell-to-cell spread of HSV-1 may shed light on the involvement of proteolipids in this process.IMPORTANCE Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establish latent infections in neurons. HSV-1 may spread from infected to uninfected cells by two main routes: by cell-free virus or by cell-to-cell spread. In the first case, virions exit into the extracellular space and then infect another cell from the outside. In the second case, viral transmission occurs through cell-to-cell contacts via a mechanism that is still poorly understood. A third mode of spread, using extracellular vesicles, also exists. In this study, we demonstrate the important role for a myelin protein, myelin and lymphocyte protein (MAL), in the process of cell-to-cell viral spread in oligodendrocytes. We show that MAL is involved in trafficking of virions along cell processes and that MAL depletion produces a significant alteration in the viral cycle, which reduces cell-to cell spread of HSV-1.


Subject(s)
Herpes Simplex/metabolism , Herpesvirus 1, Human/metabolism , Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Epithelial Cells/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/pathogenicity , Humans , Lymphocytes/metabolism , Membrane Proteins/metabolism , Myelin Proteins/metabolism , Myelin and Lymphocyte-Associated Proteolipid Proteins/chemistry , Myelin and Lymphocyte-Associated Proteolipid Proteins/physiology , Neurons/metabolism , Neurons/virology , Oligodendroglia/metabolism , Oligodendroglia/virology , Proteolipids/chemistry , Proteolipids/metabolism , T-Lymphocytes/metabolism
18.
J Clin Med ; 8(9)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514402

ABSTRACT

The objective of this study is to evaluate the risk of clinical infections by herpesviruses in patients exposed to valproic acid (VPA). We performed a case-control study nested in a primary cohort selected from the Spanish primary care population-based research database BIFAP (Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria) over the period 2001-2015. The events of interest were those diseases caused by any herpesviruses known to infect humans. For each case, up to 10 controls per case matched by age, gender, and calendar date were randomly selected. A conditional logistic regression was used to compute adjusted odds ratios (OR) and their 95% confidence intervals (95% CI). Current use of VPA was associated with a trend towards a reduced risk of clinical infections by herpesviruses as compared with non-users (OR 0.84; CI 95% 0.7-1.0; p = 0.057). Among current users, a trend to a decreased risk with treatment durations longer than 90 days was also observed. The results show a trend to a reduced risk of clinical infection by herpesviruses in patients exposed to VPA. These results are consistent with those in vitro studies showing that, in cultured cells, VPA can inhibit the production of the infectious progeny of herpesviruses. This study also shows the efficient use of electronic healthcare records for clinical exploratory research studies.

19.
Front Microbiol ; 9: 2572, 2018.
Article in English | MEDLINE | ID: mdl-30410480

ABSTRACT

Extracellular vesicles (EVs) are involved in numerous processes during infections by both enveloped and non-enveloped viruses. Among them, herpes simplex virus type-1 (HSV-1) modulates secretory pathways, allowing EVs to exit infected cells. Many characteristics regarding the mechanisms of viral spread are still unidentified, and as such, secreted vesicles are promising candidates due to their role in intercellular communications during viral infection. Another relevant role for EVs is to protect virions from the action of neutralizing antibodies, thus increasing their stability within the host during hematogenous spread. Recent studies have suggested the participation of EVs in HSV-1 spread, wherein virion-containing microvesicles (MVs) released by infected cells were endocytosed by naïve cells, leading to a productive infection. This suggests that HSV-1 might use MVs to expand its tropism and evade the host immune response. In this review, we briefly describe the current knowledge about the involvement of EVs in viral infections in general, with a specific focus on recent research into their role in HSV-1 spread. Implications of the autophagic pathway in the biogenesis and secretion of EVs will also be discussed.

20.
J Virol ; 92(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29514899

ABSTRACT

Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in the neurons of sensory ganglia. In some cases, the virus spreads into the central nervous system, causing encephalitis or meningitis. Cells infected with several different types of viruses may secrete microvesicles (MVs) containing viral proteins and RNAs. In some instances, extracellular microvesicles harboring infectious virus have been found. Here we describe the features of shedding microvesicles released by the human oligodendroglial HOG cell line infected with HSV-1 and their participation in the viral cycle. Using transmission electron microscopy, we detected for the first time microvesicles containing HSV-1 virions. Interestingly, the Chinese hamster ovary (CHO) cell line, which is resistant to infection by free HSV-1 virions, was susceptible to HSV-1 infection after being exposed to virus-containing microvesicles. Therefore, our results indicate for the first time that MVs released by infected cells contain virions, are endocytosed by naive cells, and lead to a productive infection. Furthermore, infection of CHO cells was not completely neutralized when virus-containing microvesicles were preincubated with neutralizing anti-HSV-1 antibodies. The lack of complete neutralization and the ability of MVs to infect nectin-1/HVEM-negative CHO-K1 cells suggest a novel way for HSV-1 to spread to and enter target cells. Taken together, our results suggest that HSV-1 could spread through microvesicles to expand its tropism and that microvesicles could shield the virus from neutralizing antibodies as a possible mechanism to escape the host immune response.IMPORTANCE Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in neurons. Extracellular vesicles are a heterogeneous group of membrane vesicles secreted by most cell types. Microvesicles, which are extracellular vesicles which derive from the shedding of the plasma membrane, isolated from the supernatant of HSV-1-infected HOG cells were analyzed to find out whether they were involved in the viral cycle. The importance of our investigation lies in the detection, for the first time, of microvesicles containing HSV-1 virions. In addition, virus-containing microvesicles were endocytosed into CHO-K1 cells and were able to actively infect these otherwise nonpermissive cells. Finally, the infection of CHO cells with these virus-containing microvesicles was not completely neutralized by anti-HSV-1 antibodies, suggesting that these extracellular vesicles might shield the virus from neutralizing antibodies as a possible mechanism of immune evasion.


Subject(s)
Cell-Derived Microparticles/virology , Herpes Simplex/transmission , Herpesvirus 1, Human/physiology , Oligodendroglia/virology , Virus Replication/physiology , Animals , Antibodies, Viral/immunology , CHO Cells , Cell Line , Cell Membrane/metabolism , Chlorocebus aethiops , Cricetulus , Endocytosis , HeLa Cells , Herpes Simplex/virology , Herpesvirus 1, Human/growth & development , Humans , Microscopy, Electron, Transmission , Oligodendroglia/cytology , Vero Cells , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...