Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurophysiol Clin ; 54(5): 102997, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991470

ABSTRACT

OBJECTIVES: Aberrant movement-related cortical activity has been linked to impaired motor function in Parkinson's disease (PD). Dopaminergic drug treatment can restore these, but dosages and long-term treatment are limited by adverse side-effects. Effective non-pharmacological treatments could help reduce reliance on drugs. This experiment reports the first study of home-based electroencephalographic (EEG) neurofeedback training as a non-pharmacological candidate treatment for PD. Our primary aim was to test the feasibility of our EEG neurofeedback intervention in a home setting. METHODS: Sixteen people with PD received six home visits comprising symptomology self-reports, a standardised motor assessment, and a precision handgrip force production task while EEG was recorded (visits 1, 2 and 6); and 3 × 1-hr EEG neurofeedback training sessions to supress the EEG mu rhythm before initiating handgrip movements (visits 3 to 5). RESULTS: Participants successfully learned to self-regulate mu activity, and this appeared to expedite the initiation of precision movements (i.e., time to reach target handgrip force off-medication pre-intervention = 628 ms, off-medication post-intervention = 564 ms). There was no evidence of wider symptomology reduction (e.g., Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III Motor Examination, off-medication pre-intervention = 29.00, off-medication post intervention = 30.07). Interviews indicated that the intervention was well-received. CONCLUSION: Based on the significant effect of neurofeedback on movement-related cortical activity, positive qualitative reports from participants, and a suggestive benefit to movement initiation, we conclude that home-based neurofeedback for people with PD is a feasible and promising non-pharmacological treatment that warrants further research.

2.
Accid Anal Prev ; 146: 105755, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32927281

ABSTRACT

The objectives of this paper were to directly examine the roles of central and peripheral vision in hazard perception and to test whether perceptual training can enhance hazard perception. We also examined putative cortical mechanisms underpinning any effect of perceptual training on performance. To address these objectives, we used the gaze-contingent display paradigm to selectively present information to central and peripheral parts of the visual field. In Experiment 1, we compared hazard perception abilities of experienced and inexperienced drivers while watching video clips in three different viewing conditions (full vision; clear central and blurred peripheral vision; blurred central and clear peripheral vision). Participants' visual search behaviour and cortical activity were simultaneously recorded. In Experiment 2, we determined whether training with clear central and blurred peripheral vision could improve hazard perception among non-licensed drivers. Results demonstrated that (i) information from central vision is more important than information from peripheral vision in identifying hazard situations, for screen-based hazard perception tests, (ii) clear central and blurred peripheral vision viewing helps the alignment of line-of-gaze and attention, (iii) training with clear central and blurred peripheral vision can improve screen-based hazard perception. The findings have important implications for road safety and provide a new training paradigm to improve hazard perception.


Subject(s)
Automobile Driving/education , Pattern Recognition, Visual , Visual Fields/physiology , Accidents, Traffic/prevention & control , Adult , Attention , Female , Humans , Male
3.
Psychophysiology ; 57(9): e13586, 2020 09.
Article in English | MEDLINE | ID: mdl-32412145

ABSTRACT

Self-talk is a psychological skill that benefits motor performance by controlling and organizing performers' thoughts. While the behavioral effects of self-talk are clear, research on the mechanisms underpinning the effects of different modes of self-talk is sparse. To address this issue, we propose and test a psychophysiological model of the effects of self-talk on motor performance. Forty golf novices practiced a golf putting task while using either instructional or motivational self-talk preceding each putt. We measured performance (radial error), technique (club kinematics and muscle activity), cardiac activity (heart-rate and event-related heart-rate change), as well as electroencephalographic alpha power and connectivity in a randomized (group: instructional self-talk, motivational self-talk) experimental design. Instructional self-talk promoted superior technique and was associated with greater parietal alpha power and weaker connectivity between frontal and parietal electrodes and all other scalp sites, possibly indicative of increased top-down control of action. These findings provide initial evidence for an information-processing mechanism underlying the benefits of instructional self-talk. They also cast doubt on the validity of left-frontotemporal connectivity as a measure of verbal-analytic processing during motor tasks. Motivational self-talk led to increased heart-rate and reduced event-related heart rate variability, suggesting an effort-based mechanism to explain the benefits of motivational self-talk. Our study represents the most complete multi-measure investigation of self-talk to date. We hope that our psychophysiological model of self-talk will encourage researchers to move beyond the exclusive reliance on behavioral and self-report measures to discover the mechanisms underlying the benefits of self-talk for performance.


Subject(s)
Brain/physiology , Golf , Motivation , Psychomotor Performance , Adult , Alpha Rhythm , Biomechanical Phenomena , Electrocardiography , Electroencephalography , Female , Frontal Lobe , Heart Rate , Humans , Male , Motor Skills , Neural Pathways , Parietal Lobe , Psychophysiology , Random Allocation , Young Adult
4.
J Sport Exerc Psychol ; 40(3): 135-145, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30008239

ABSTRACT

This study was designed to test the theorized link between reinvestment, motor chunks, and conscious processing, to provide a thorough examination of reinvestment theory. The authors measured electroencephalographic power and connectivity alongside self-reported conscious processing and behavioral indices of chunking in a 2 (group) × 5 (block) mixed-model design. A total of 55 individuals acquired a motor sequence (blocks A1, A2, A3, and A4) by relatively explicit (errorful) or implicit (errorless) paradigms. Then they performed in a pressure condition (block T). Results confirmed that chunking characterizes both modes of acquisition. However, explicit acquisition resulted in quicker chunking, reduced conscious processing, and increased cortical efficiency (left-temporal high-alpha power). In support of reinvestment theory, self-reported conscious processing tended to increase under pressure among explicit trainees only. In contrast to reinvestment theory, this had no adverse effect on performance. The results endorse explicit acquisition as an effective mode of training and provide a new neurophysiological explanation of this phenomenon.


Subject(s)
Learning/physiology , Memory/physiology , Motor Skills/physiology , Psychomotor Performance , Consciousness , Electroencephalography , Female , Humans , Male , Stress, Psychological , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...