Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Biol ; 4(7): 586-91, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9228952

ABSTRACT

The crystal structure of the dimerization domain of the V(D)J recombination-activating protein, RAG1, was solved using zinc anomalous scattering. The structure reveals an unusual combination of multi-class zinc-binding motifs, including a zinc RING finger and a C2H2 zinc finger, that together from a single structural domain. The domain also contains a unique zinc binuclear cluster in place of a normally mononuclear zinc site in the RING finger. Together, four zinc ions help organize the entire domain, including the two helices that form the dimer interface.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Homeodomain Proteins , Zinc/metabolism , Binding Sites , Crystallization , Crystallography, X-Ray/methods , Dimerization , Hydrogen Bonding , Models, Molecular , Protein Conformation , Zinc Fingers
2.
Biochemistry ; 30(32): 8026-35, 1991 Aug 13.
Article in English | MEDLINE | ID: mdl-1868076

ABSTRACT

The DNA unwinding produced by specific adducts of the antitumor drug cis-diamminedichloroplatinum(II) has been quantitatively determined. Synthetic DNA duplex oligonucleotides of varying lengths with two base pair cohesive ends were synthesized and characterized that contained site-specific intrastrand N7-purine/N7-purine cross-links. Included are cis-[Pt(NH3)2[d(GpG)]], cis-[Pt(NH3)2(d(ApG)]], and cis-[Pt(NH3)2[d(GpTpG)]] adducts, respectively referred to as cis-GG, cis-AG, and cis-GTG. Local DNA distortions at the site of platination were amplified by polymerization of these monomers and quantitatively evaluated by using polyacrylamide gel electrophoresis. The extent of DNA unwinding was determined by systematically varying the interplatinum distance, or phasing, in polymers containing the adducts. The multimer that migrates most slowly gives the optimal phasing for cooperative bending, from which the degree of unwinding can be obtained. We find that the cis-GG and cis-AG adducts both unwind DNA by 13 degrees, while the cis-GTG adduct unwinds DNA by 23 degrees. In addition, experiments are presented that support previous studies revealing that a hinge joint forms at the sites of platination in DNA molecules containing trans-GTG adducts. On the basis of an analysis of the present and other published studies of site-specifically modified DNA, we propose that local duplex unwinding is a major determinant in the recognition of DNA damage by the Escherichia coli (A)BC excinuclease. In addition, local duplex unwinding of 13 degrees and bending by 35 degrees are shown to correlate well with the recognition of platinated DNA by a previously identified damage recognition protein (DRP) in human cells.


Subject(s)
Cisplatin , DNA Damage , DNA/chemistry , Escherichia coli Proteins , Oligodeoxyribonucleotides/chemistry , Base Sequence , Binding Sites , DNA/chemical synthesis , Endodeoxyribonucleases , Kinetics , Models, Biological , Molecular Sequence Data , Nucleic Acid Denaturation , Oligodeoxyribonucleotides/chemical synthesis , Structure-Activity Relationship
3.
Cancer Res ; 51(7): 1866-75, 1991 Apr 01.
Article in English | MEDLINE | ID: mdl-2004370

ABSTRACT

Chemical and biological studies are presented for a new series of platinum(II) antitumor agents that violate the classical structure-activity relationships established for platinum complexes. These new agents, which have demonstrated activity against murine and human tumor systems, are cis-[Pt(NH3)2(Am)Cl]+ cations, in which Am is a derivative of pyridine, pyrimidine, purine, or aniline. Members from this series block simian virus 40 DNA replication in vitro and inhibit the action of DNA polymerases at individual guanine residues in replication mapping experiments. Monoclonal antibodies that bind selectively to cisplatin lesions on calf thymus DNA were used in a competitive enzyme-linked immunosorbent assay study to show that the platinum-triamine complexes do not produce the type of intrastrand cross-links on DNA that are characteristics of cisplatin and analogues with the general formula cis-[Pt(amine)2X2]. These results indicate that cis-[Pt(NH3)2(Am)Cl]+ cations form monofunctional adducts on DNA rather than eliminate NH3 or Am to afford bifunctional lesions. This conclusion is further supported by nuclear magnetic resonance spectroscopic and enzymatic digestion analyses of the products of the reactions of these triamine complexes with d(GpG) and dG, which also reveal monofunctional binding. When cis-[Pt(NH3)2(4-Br-pyridine)Cl]+ was allowed to stand in phosphate-buffered saline at 37 degrees C for 14 days, however, NH4+ was released and trans-[Pt(NH3)(4-Br-pyridine)Cl2] formed concomitantly. This compound was characterized by a single crystal X-ray diffraction study, the details of which are reported. The fact that trans-[Pt(NH3)(4-Br-pyridine)Cl2] displays no anticancer activity, however, indicates that its formation from cis-[Pt(NH3)2(4-Br-pyridine)Cl]+ is not a significant component of the mechanism of action of this platinum-triamine complex. Taken together, these findings indicate that the cytotoxicity of cis-[Pt(NH3)2(Am)Cl]+ complexes most likely arises from the formation of monofunctional adducts. The DNA binding properties associated with this new class of antitumor agents suggest that they may display an activity profile different from that of cisplatin and related analogues.


Subject(s)
Cisplatin/pharmacology , DNA Replication/drug effects , DNA/metabolism , Cisplatin/analogs & derivatives , Cisplatin/chemistry , Cisplatin/metabolism , DNA/chemistry , Structure-Activity Relationship
4.
Biochemistry ; 29(24): 5872-80, 1990 Jun 19.
Article in English | MEDLINE | ID: mdl-2383564

ABSTRACT

A factor has been identified in extracts from human HeLa and hamster V79 cells that retards the electrophoretic mobility of several DNA restriction fragments modified with the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin). Binding of the factor to cisplatin-modified DNA was sensitive to pretreatment with proteinase K, establishing that the factor is a protein. Gel mobility shifts were observed with probes containing as few as seven Pt atoms per kilobase of duplex DNA. By competition experiments the dissociation constant, Kd, of the protein from cisplatin-modified DNA was estimated to be (1-20) X 10(-10) M. Protein binding is selective for DNA modified with cisplatin, [Pt(en)Cl2] (en, ethylenediamine), and [Pt(dach)Cl2] (dach, 1,2-diaminocyclohexane) but not with chemotherapeutically inactive trans-diamminedichloroplatinum(II) or monofunctionally coordinating [Pt(dien)Cl]Cl (dien, diethylenetriamine) complexes. The protein also does not bind to DNA containing UV-induced photoproducts. The protein binds specifically to 1,2-intrastrand d(GpG) and d(ApG) cross-links formed by cisplatin, as determined by gel mobility shifts with synthetic 110-bp duplex oligonucleotides; these modified oligomers contained five equally spaced adducts of either cis-[Pt(NH3)2d(GpG) or cis-[Pt(NH3)2d(ApG)]. Oligonucleotides containing the specific adducts cis-[Pt(NH3)2d(GpTpG)], trans-[Pt(NH3)2d(GpTpG)], or cis-[Pt(NH3)2(N3-cytosine)d(G)] were not recognized by the protein. The apparent molecular weight of the protein is 91,000, as determined by sucrose gradient centrifugation of a preparation partially purified by ammonium sulfate fractionation. Binding of the protein to platinum-modified DNA does not require cofactors but is sensitive to treatment with 5 mM MnCl2, CdCl2, CoCl2, or ZnCl2 and with 1 mM HgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cisplatin/metabolism , Cross-Linking Reagents/pharmacokinetics , DNA Adducts , DNA Damage , DNA, Viral/drug effects , DNA/metabolism , Base Sequence , Binding, Competitive , HeLa Cells , Molecular Sequence Data , Oligonucleotide Probes , Platinum/pharmacokinetics
5.
Biophys Chem ; 35(2-3): 179-88, 1990 Apr.
Article in English | MEDLINE | ID: mdl-2397272

ABSTRACT

Duplex oligonucleotides containing a single intrastrand [Pt(NH3)2]2+ cross-link or monofunctional adduct and either 15 or 22 bp in length were synthesized and chemically characterized. The platinum-modified and unmodified control DNAs were polymerized in the presence of DNA ligase and the products studied on 8% native polyacrylamide gels. The extent of DNA bending caused by the various platinum-DNA adducts was revealed by their gel mobility shifts relative to unplatinated controls. The bifunctional adducts cis-[Pt(NH3)2[d(GpG)]]+, cis-[Pt(NH3)2[d(ApG)]]+, and cis-[Pt(NH3)2[d(G*pTpG*)]], where the asterisks denote the sites of platinum binding, all bend the double helix, whereas the adduct trans-[Pt(NH3)2[d(G*pTpG*)]] imparts a degree of flexibility to the duplex. When modified by the monofunctional adduct cis-[Pt(NH3)2(N3-cytosine)(dG)]Cl the helix remains rod-like. These results reveal important structural differences in DNAs modified by the antitumor drug cisplatin and its analogs that could be important in the biological processing of the various adducts in vivo.


Subject(s)
Cisplatin/pharmacology , DNA/drug effects , Organoplatinum Compounds/pharmacology , Autoradiography , Base Sequence , Chemical Phenomena , Chemistry, Physical , Hydrolysis , Molecular Conformation , Molecular Sequence Data , Spectrophotometry, Atomic , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...