Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Travel Med ; 30(4)2023 06 23.
Article in English | MEDLINE | ID: mdl-37171132

ABSTRACT

BACKGROUND: Climate change and globalization contribute to the expansion of mosquito vectors and their associated pathogens. Long spared, temperate regions have had to deal with the emergence of arboviruses traditionally confined to tropical regions. Chikungunya virus (CHIKV) was reported for the first time in Europe in 2007, causing a localized outbreak in Italy, which then recurred repeatedly over the years in other European localities. This raises the question of climate effects, particularly temperature, on the dynamics of vector-borne viruses. The objective of this study is to improve the understanding of the molecular mechanisms set up in the vector in response to temperature. METHODS: We combine three complementary approaches by examining Aedes albopictus mosquito gene expression (transcriptomics), bacterial flora (metagenomics) and CHIKV evolutionary dynamics (genomics) induced by viral infection and temperature changes. RESULTS: We show that temperature alters profoundly mosquito gene expression, bacterial microbiome and viral population diversity. We observe that (i) CHIKV infection upregulated most genes (mainly in immune and stress-related pathways) at 20°C but not at 28°C, (ii) CHIKV infection significantly increased the abundance of Enterobacteriaceae Serratia marcescens at 28°C and (iii) CHIKV evolutionary dynamics were different according to temperature. CONCLUSION: The substantial changes detected in the vectorial system (the vector and its bacterial microbiota, and the arbovirus) lead to temperature-specific adjustments to reach the ultimate goal of arbovirus transmission; at 20°C and 28°C, the Asian tiger mosquito Ae. albopictus was able to transmit CHIKV at the same efficiency. Therefore, CHIKV is likely to continue its expansion in the northern regions and could become a public health problem in more countries than those already affected in Europe.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Animals , Humans , Climate Change , Temperature , Multiomics , Chikungunya Fever/epidemiology , Chikungunya virus/genetics
2.
PLoS Negl Trop Dis ; 16(12): e0010930, 2022 12.
Article in English | MEDLINE | ID: mdl-36516120

ABSTRACT

One of the most effective vaccines against an arbovirus is the YFV-17D live-attenuated vaccine developed in 1937 against Yellow Fever (YF). This vaccine replicates poorly in mosquitoes and consequently, is not transmitted by vectors. Vaccine shortages, mainly due to constrained productions based on pathogen-free embryonated eggs, led Sanofi to move towards alternative methods based on a state-of-the-art process using continuous cell line cultures in bioreactor. vYF-247 is a next-generation live-attenuated vaccine candidate based on 17D adapted to grow in serum-free Vero cells. For the development of a new vaccine, WHO recommends to document infectivity and replication in mosquitoes. Here we infected Aedes aegypti and Aedes albopictus mosquitoes with vYF-247 vaccine compared first to the YF-17D-204 reference Sanofi vaccines (Stamaril and YF-VAX) and a clinical human isolate S-79, provided in a blood meal at a titer of 6.5 Log ffu/mL and secondly, to the clinical isolate only at an increased titer of 7.5 Log ffu/mL. At different days post-infection, virus replication, dissemination and transmission were evaluated by quantifying viral particles in mosquito abdomen, head and thorax or saliva, respectively. Although comparison of vYF-247 to reference vaccines could not be completed to yield significant results, we showed that vYF-247 was not transmitted by both Aedes species, either laboratory strains or field-collected populations, compared to clinical strain S-79 at the highest inoculation dose. Combined with the undetectable to low level viremia detected in vaccinees, transmission of the vYF-247 vaccine by mosquitoes is highly unlikely.


Subject(s)
Aedes , Yellow Fever Vaccine , Yellow Fever , Chlorocebus aethiops , Animals , Humans , Vaccines, Attenuated , Vero Cells , Mosquito Vectors , Yellow Fever/prevention & control , Antigens, Viral , Yellow fever virus
3.
Front Microbiol ; 12: 773211, 2021.
Article in English | MEDLINE | ID: mdl-34956136

ABSTRACT

More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus-vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.

4.
Front Microbiol ; 11: 584846, 2020.
Article in English | MEDLINE | ID: mdl-33101259

ABSTRACT

Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.

5.
Sci Rep ; 10(1): 18404, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110109

ABSTRACT

In most of the world, Dengue virus (DENV) is mainly transmitted by the mosquito Aedes aegypti while in Europe, Aedes albopictus is responsible for human DENV cases since 2010. Identifying mutations that make DENV more competent for transmission by Ae. albopictus will help to predict emergence of epidemic strains. Ten serial passages in vivo in Ae. albopictus led to select DENV-1 strains with greater infectivity for this vector in vivo and in cultured mosquito cells. These changes were mediated by multiple adaptive mutations in the virus genome, including a mutation at position 10,418 in the DENV 3'UTR within an RNA stem-loop structure involved in subgenomic flavivirus RNA production. Using reverse genetics, we showed that the 10,418 mutation alone does not confer a detectable increase in transmission efficiency in vivo. These results reveal the complex adaptive landscape of DENV transmission by mosquitoes and emphasize the role of epistasis in shaping evolutionary trajectories of DENV variants.


Subject(s)
Adaptation, Physiological , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/virology , Animals , Dengue/epidemiology , Dengue/transmission , Epistasis, Genetic , Humans
6.
Emerg Microbes Infect ; 8(1): 1668-1678, 2019.
Article in English | MEDLINE | ID: mdl-31735122

ABSTRACT

Since its emergence in Yap Island in 2007, Zika virus (ZIKV) has affected all continents except Europe. Despite the hundreds of cases imported to European countries from ZIKV-infested regions, no local cases have been reported in localities where the ZIKV-competent mosquito Aedes albopictus is well established. Here we analysed the vector competence of European Aedes (aegypti and albopictus) mosquitoes to different genotypes of ZIKV. We demonstrate that Ae. albopictus from France was less susceptible to the Asian ZIKV than to the African ZIKV. Critically we show that effective crossing of anatomical barriers (midgut and salivary glands) after an infectious blood meal depends on a viral load threshold to trigger: (i) viral dissemination from the midgut to infect mosquito internal organs and (ii) viral transmission from the saliva to infect a vertebrate host. A viral load in body ≥4800 viral copies triggered dissemination and ≥12,000 viral copies set out transmission. Only 27.3% and 18.2% of Ae. albopictus Montpellier mosquitoes meet respectively these two criteria. Collectively, these compelling results stress the poor ability of Ae. albopictus to sustain a local transmission of ZIKV in Europe and provide a promising tool to evaluate the risk of ZIKV transmission in future outbreaks.


Subject(s)
Aedes/physiology , Mosquito Vectors/physiology , Zika Virus Infection/transmission , Zika Virus/physiology , Aedes/genetics , Aedes/virology , Animals , Europe , Female , Humans , Mosquito Vectors/genetics , Mosquito Vectors/virology , Viral Load , Zika Virus/genetics , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...