Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Environ Virol ; 16(2): 143-158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308001

ABSTRACT

Removal of pathogenic viruses from water resources is critically important for sanitation and public health. Nanotechnology is a promising technology for virus inactivation. In this paper, the effects of titanium dioxide (TiO2) anatase nanoparticles (NPs) on human adenovirus type 35 (HAdV-35) removal under static and dynamic (with agitation) batch conditions were comprehensively studied. Batch experiments were performed at room temperature (25 °C) with and without ambient light using three different initial virus concentrations. The virus inactivation experimental data were satisfactorily fitted with a pseudo-first-order expression with a time-dependent rate coefficient. The experimental results demonstrated that HAdV-35 sorption onto TiO2 NPs was favored with agitation under both ambient light and dark conditions. However, no distinct relationships between virus initial concentration and removal efficiency could be established from the experimental data.


Subject(s)
Adenoviruses, Human , Nanoparticles , Titanium , Virus Inactivation , Titanium/chemistry , Titanium/pharmacology , Adenoviruses, Human/drug effects , Adenoviruses, Human/chemistry , Adenoviruses, Human/physiology , Adenoviruses, Human/genetics , Adsorption , Humans , Virus Inactivation/drug effects , Nanoparticles/chemistry , Water Purification/methods , Water Purification/instrumentation , Kinetics
2.
J Food Prot ; 79(3): 454-62, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26939656

ABSTRACT

Over one-half of foodborne diseases are believed to be of viral origin. The ability of viruses to persist in the environment and fresh produce, as well as their low infectious dose, allows even a small amount of contamination to cause serious foodborne problems. Moreover, the consumer's demands for fresh, convenient, and safe foods have prompted research into alternative food disinfection technologies. Our study focuses on viral inactivation by both conventional and alternative nonthermal disinfection technologies on different fresh ready-to-eat food products. The use of chlorine, as well as that of nonthermal technologies such as UV light and ultrasound (US), was tested for different treatment times. UV nonthermal technology was found to be more effective for the disinfection of human adenoviruses (hAdVs) compared with US, achieving a log reduction of 2.13, 1.25, and 0.92 for lettuce, strawberries, and cherry tomatoes, respectively, when UV treatment was implemented for 30 min. US treatment for the same period achieved a log reduction of 0.85, 0.53, and 0.36, respectively. The sequential use of US and UV was found to be more effective compared with when the treatments were used separately, for the same treatment time, thus indicating a synergistic effect. In addition, human adenoviruses were inactivated sooner, when chlorine treatment was used. Therefore, the effect of each disinfection method was dependent upon the treatment time and the type of food.


Subject(s)
Adenoviruses, Human/drug effects , Adenoviruses, Human/isolation & purification , Adenoviruses, Human/radiation effects , Disinfection/methods , Feces/virology , Food Contamination/prevention & control , Cell Line, Tumor , Chlorine/pharmacology , DNA, Viral/isolation & purification , Food Handling , Food Microbiology , Fragaria/virology , Humans , Lactuca/virology , Ultraviolet Rays , Virus Inactivation
3.
Sci Total Environ ; 517: 86-95, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25723960

ABSTRACT

Human adenoviruses (hAdVs) are pathogenic viruses responsible for public health problems worldwide. They have also been used as viral indicators in environmental systems. Coliphages (e.g., MS2, ΦX174) have also been studied as indicators of viral pollution in fecally contaminated water. Our objective was to evaluate the distribution of three viral fecal indicators (hAdVs, MS2, and ΦΧ174), between two different phyllosilicate clays (kaolinite and bentonite) and the aqueous phase. A series of static and dynamic experiments were conducted under two different temperatures (4, 25°C) for a time period of seven days. HAdV adsorption was examined in DNase I reaction buffer (pH=7.6, and ionic strength (IS)=1.4mM), whereas coliphage adsorption in phosphate buffered saline solution (pH=7, IS=2mM). Moreover, the effect of IS on hAdV adsorption under static conditions was evaluated. The adsorption of hAdV was assessed by real-time PCR and its infectivity was tested by cultivation methods. The coliphages MS2 and ΦΧ174 were assayed by the double-layer overlay method. The experimental results have shown that coliphage adsorption onto both kaolinite and bentonite was higher for the dynamic than the static experiments; whereas hAdV adsorption was lower under dynamic conditions. The adsorption of hAdV increased with decreasing temperature, contrary to the results obtained for the coliphages. This study examines the combined effect of temperature, agitation, clay type, and IS on hAdV adsorption onto clays. The results provide useful new information on the effective removal of viral fecal indicators (MS2, ΦX174 and hAdV) from dilute aqueous solutions by adsorption onto kaolinite and bentonite. Factors enabling enteric viruses to penetrate soils, groundwater and travel long distances within aquifers are important public health issues. Because the observed adsorption behavior of surrogate coliphages MS2 and ΦΧ174 is substantially different to that of hAdV, neither MS2 nor ΦΧ174 is recommended as a suitable model for adenovirus.


Subject(s)
Adenoviruses, Human/chemistry , Bentonite/chemistry , Coliphages/chemistry , Kaolin/chemistry , Water Pollution , Adsorption , Humans
4.
Food Environ Virol ; 4(2): 73-80, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23412813

ABSTRACT

In this study, the prevalence of different enteric viruses in commercial mussels was evaluated at the retail level in three European countries (Finland, Greece and Spain). A total of 153 mussel samples from different origins were analysed for human norovirus (NoV) genogroups I and II, hepatitis A virus (HAV) and hepatitis E virus (HEV). Human adenovirus (HAdV) was also tested as an indicator of human faecal contamination. A full set of controls (such as sample process control, internal amplification controls, and positive and negative controls) were implemented during the process. The use of a sample process control allowed us to calculate the efficiencies of extraction, which ranged from 79 to 0.5 %, with an average value of 10 %. Samples were positive in 41 % of cases, with HAdV being the most prevalent virus detected (36 %), but no significant correlation was found between the presence of HAdV and human NoV, HAV and HEV. The prevalences of human norovirus genogroup II, HEV and human NoV genogroup I were 16, 3 and 0.7 %, respectively, and HAV was not detected. The estimated number of PCR detectable units varied between 24 and 1.4 × 10(3) g(-1) of digestive tract. Interestingly, there appeared to be a significant association between the type of mussel species (M. galloprovincialis) and the positive result of samples, although a complete overlap between country and species examined required this finding to be confirmed including samples of both species from all possible countries of origin.


Subject(s)
Bivalvia/virology , Digestive System Diseases/virology , Food Microbiology , Foodborne Diseases/virology , Seafood/virology , Viruses , Adenoviridae , Animals , Commerce , Feces/virology , Finland , Greece , Hepatitis A virus , Hepatitis E virus , Humans , Norovirus , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...