Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 123(23): 4888-4900, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31117616

ABSTRACT

Microtubules (MTs) are structural components essential for cell morphology and organization. It has recently been shown that defects in the filament's lattice structure can be healed to create stronger filaments in a local area and ultimately cause global changes in MT organization and cell mobility. The ability to break, causing a defect, and heal appears to be a physiologically relevant and important feature of the MT structure. Defects can be created by MT severing enzymes and are target sites for complete severing or for healing by newly incorporated dimers. One particular lattice defect, the MT lattice ''seam" interface, is a location often speculated to be a weak site, a site of disassembly, or a target site for MT binding proteins. Despite seams existing in many MT structures, very little is known about the seam's role in MT function and dynamics. In this study, we probed the mechanical stability of the seam interface by applying coarse-grained indenting molecular dynamics. We found that the seam interface is as structurally robust as the typical lattice structure of MTs. Our results suggest that, unlike prior results that claim the seam is a weak site, it is just as strong as any other location on the MT, corroborating recent mechanical measurements.


Subject(s)
Microtubules/chemistry , Molecular Dynamics Simulation , Polymerization
2.
Cytoskeleton (Hoboken) ; 76(3): 254-268, 2019 03.
Article in English | MEDLINE | ID: mdl-30980604

ABSTRACT

Microtubule network remodeling is an essential process for cell development, maintenance, cell division, and motility. Microtubule-severing enzymes are key players in the remodeling of the microtubule network; however, there are still open questions about their fundamental biochemical and biophysical mechanisms. Here, we explored the ability of the microtubule-severing enzyme katanin to depolymerize stabilized microtubules. Interestingly, we found that the tubulin C-terminal tail (CTT), which is required for severing, is not required for katanin-catalyzed depolymerization. We also found that the depolymerization of microtubules lacking the CTT does not require ATP or katanin's ATPase activity, although the ATP turnover enhanced depolymerization. We also observed that the depolymerization rate depended on the katanin concentration and was best described by a hyperbolic function. Finally, we demonstrate that katanin can bind to filaments that lack the CTT, contrary to previous reports. The results of our work indicate that microtubule depolymerization likely involves a mechanism in which binding, but not enzymatic activity, is required for tubulin dimer removal from the filament ends.


Subject(s)
Katanin/metabolism , Microtubules/metabolism , Tubulin/metabolism , Adenosine Triphosphate/metabolism , Animals , Catalysis , Gene Expression , Katanin/genetics , Katanin/isolation & purification , Kinetics , Microtubule-Associated Proteins/metabolism , Microtubules/chemistry , Microtubules/genetics , Models, Molecular , Polymerization , Protein Binding , Protein Domains/genetics , Tubulin/genetics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...