Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 8999, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637675

ABSTRACT

Despite considerable progress in seismology, mineral physics, geodynamics, paleomagnetism, and mathematical geophysics, Earth's inner core structure and evolution remain enigmatic. One of the most significant issues is its thermal history and the current thermal state. Several hypotheses involving a thermally-convecting inner core have been proposed: a simple, high-viscosity, translational mode, or a classical, lower-viscosity, plume-style convection. Here, we use state-of-the-art seismic imaging to probe the outermost shell of the inner core for its isotropic compressional speed and compare it with recently developed attenuation maps. The pattern emerging in the resulting tomograms is interpreted with recent data on the viscosity of iron as the inner core surface manifestation of a thermally-driven flow, with a positive correlation among compressional speed and attenuation and temperature. Although the outer-core convection controls the heat flux across the inner core boundary, the internally driven inner-core convection is a plausible model that explains a range of observations for the inner core, including distinct anisotropy in the innermost inner core.

2.
J Phys Chem Lett ; 15(4): 1152-1160, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38269426

ABSTRACT

Diamond possesses exceptional physical properties due to its remarkably strong carbon-carbon bonding, leading to significant resilience to structural transformations at very high pressures and temperatures. Despite several experimental attempts, synthesis and recovery of the theoretically predicted post-diamond BC8 phase remains elusive. Through quantum-accurate multimillion atom molecular dynamics (MD) simulations, we have uncovered the extreme metastability of diamond at very high pressures, significantly exceeding its range of thermodynamic stability. We predict the post-diamond BC8 phase to be experimentally accessible only within a narrow high pressure-temperature region of the carbon phase diagram. The diamond to BC8 transformation proceeds through premelting followed by BC8 nucleation and growth in the metastable carbon liquid. We propose a double-shock compression pathway for BC8 synthesis, which is currently being explored in experiments at the National Ignition Facility.

3.
Sci Adv ; 9(49): eadj2660, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38055828

ABSTRACT

Knowledge of high-pressure melting curves of silicate minerals is critical for modeling the thermal-chemical evolution of rocky planets. However, the melting temperature of davemaoite, the third most abundant mineral in Earth's lower mantle, is still controversial. Here, we investigate the melting curves of two minerals, MgSiO3 bridgmanite and CaSiO3 davemaoite, under their stability field in the mantle by performing first-principles molecular dynamics simulations based on the density functional theory. The melting curve of bridgmanite is in excellent agreement with previous studies, confirming a general consensus on its melting temperature. However, we predict a much higher melting curve of davemaoite than almost all previous estimates. Melting temperature of davemaoite at the pressure of core-mantle boundary (~136 gigapascals) is about 7700(150) K, which is approximately 2000 K higher than that of bridgmanite. The ultrarefractory nature of davemaoite is critical to reconsider many models in the deep planetary interior, for instance, solidification of early magma ocean and geodynamical behavior of mantle rocks.

4.
Nat Commun ; 10(1): 2483, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31171778

ABSTRACT

The Earth's solid inner core is a highly attenuating medium. It consists mainly of iron. The high attenuation of sound wave propagation in the inner core is at odds with the widely accepted paradigm of hexagonal close-packed phase stability under inner core conditions, because sound waves propagate through the hexagonal iron without energy dissipation. Here we show by first-principles molecular dynamics that the body-centered cubic phase of iron, recently demonstrated to be thermodynamically stable under the inner core conditions, is considerably less elastic than the hexagonal phase. Being a crystalline phase, the body-centered cubic phase of iron possesses the viscosity close to that of a liquid iron. The high attenuation of sound in the inner core is due to the unique diffusion characteristic of the body-centered cubic phase. The low viscosity of iron in the inner core enables the convection and resolves a number of controversies.

5.
Sci Rep ; 5: 18382, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26675747

ABSTRACT

The synthesis of complex organic molecules with C-C bonds is possible under conditions of reduced activity of oxygen. We have found performing ab initio molecular dynamics simulations of the C-O-H-Fe system that such conditions exist at the core-mantle boundary (CMB). H2O and CO2 delivered to the CMB by subducting slabs provide a source for hydrogen and carbon. The mixture of H2O and CO2 subjected to high pressure (130 GPa) and temperature (4000 to 4500 K) does not lead to synthesis of complex hydrocarbons. However, when Fe is added to the system, C-C bonds emerge. It means that oil might be a more abundant mineral than previously thought.

6.
Sci Rep ; 3: 2340, 2013.
Article in English | MEDLINE | ID: mdl-23902995

ABSTRACT

We performed ab initio molecular dynamics simulations of the C2c and Cmca-12 phases of hydrogen at pressures from 210 to 350 GPa. These phases were predicted to be stable at 0 K and pressures above 200 GPa. However, systematic studies of temperature impact on properties of these phases have not been performed so far. Filling this gap, we observed that on temperature increase diffusion sets in the Cmca-12 phase, being absent in C2c. We explored the mechanism of diffusion and computed melting curve of hydrogen at extreme pressures. The results suggest that the recent experiments claiming conductive hydrogen at the pressure around 260 GPa and ambient temperature might be explained by the diffusion. The diffusion might also be the reason for the difference in Raman spectra obtained in recent experiments.


Subject(s)
Diffusion , Hydrogen/chemistry , Models, Chemical , Molecular Dynamics Simulation , Computer Simulation , Pressure , Temperature
7.
Proc Natl Acad Sci U S A ; 107(21): 9507-12, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20457937

ABSTRACT

It has been shown that the Earth's inner core has an axisymmetric anisotropic structure with seismic waves traveling approximately 3% faster along polar paths than along equatorial directions. Hemispherical anisotropic patterns of the solid Earth's core are rather complex, and the commonly used hexagonal-close-packed iron phase might be insufficient to account for seismological observations. We show that the data we collected are in good agreement with the presence of two anisotropically specular east and west core hemispheres. The detected travel-time anomalies can only be disclosed by a lattice-preferred orientation of a body-centered-cubic iron aggregate, having a fraction of their [111] crystal axes parallel to the Earth's rotation axis. This is compelling evidence for the presence of a body-centered-cubic Fe phase at the top of the Earth's inner core.

8.
J Chem Phys ; 129(19): 194508, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-19026067

ABSTRACT

The melting curve of hydrogen was computed for pressures up to 200 GPa, using molecular dynamics. The inter- and intramolecular interactions were described by the reactive force field (ReaxFF) model. The model describes the pressure-volume equation of state solid hydrogen in good agreement with experiment up to pressures over 150 GPa, however the corresponding equation of state for liquid deviates considerably from density functional theory calculations. Due to this, the computed melting curve, although shares most of the known features, yields considerably lower melting temperatures compared to extrapolations of the available diamond anvil cell data. This failure of the ReaxFF model, which can reproduce many physical and chemical properties (including chemical reactions in hydrocarbons) of solid hydrogen, hints at an important change in the mechanism of interaction of hydrogen molecules in the liquid state.

9.
Science ; 319(5864): 797-800, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18258912

ABSTRACT

Earth's solid-iron inner core is elastically anisotropic. Sound waves propagate faster along Earth's spin axis than in the equatorial plane. This anisotropy has previously been explained by a preferred orientation of the iron alloy hexagonal crystals. However, hexagonal iron becomes increasingly isotropic on increasing temperature at pressures of the inner core and is therefore unlikely to cause the anisotropy. An alternative explanation, supported by diamond anvil cell experiments, is that iron adopts a body-centered cubic form in the inner core. We show, by molecular dynamics simulations, that the body-centered cubic iron phase is extremely anisotropic to sound waves despite its high symmetry. Direct simulations of seismic wave propagation reveal an anisotropy of 12%, a value adequate to explain the anisotropy of the inner core.

10.
Science ; 316(5831): 1603-5, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17569860

ABSTRACT

Earth's solid-iron inner core has a low rigidity that manifests itself in the anomalously low velocities of shear waves as compared to shear wave velocities measured in iron alloys. Normally, when estimating the elastic properties of a polycrystal, one calculates an average over different orientations of a single crystal. This approach does not take into account the grain boundaries and defects that are likely to be abundant at high temperatures relevant for the inner core conditions. By using molecular dynamics simulations, we show that, if defects are considered, the calculated shear modulus and shear wave velocity decrease dramatically as compared to those estimates obtained from the averaged single-crystal values. Thus, the low shear wave velocity in the inner core is explained.

11.
Nature ; 424(6952): 1032-4, 2003 Aug 28.
Article in English | MEDLINE | ID: mdl-12944963

ABSTRACT

Iron is thought to be the main constituent of the Earth's core, and considerable efforts have therefore been made to understand its properties at high pressure and temperature. While these efforts have expanded our knowledge of the iron phase diagram, there remain some significant inconsistencies, the most notable being the difference between the 'low' and 'high' melting curves. Here we report the results of molecular dynamics simulations of iron based on embedded atom models fitted to the results of two implementations of density functional theory. We tested two model approximations and found that both point to the stability of the body-centred-cubic (b.c.c.) iron phase at high temperature and pressure. Our calculated melting curve is in agreement with the 'high' melting curve, but our calculated phase boundary between the hexagonal close packed (h.c.p.) and b.c.c. iron phases is in good agreement with the 'low' melting curve. We suggest that the h.c.p.-b.c.c. transition was previously misinterpreted as a melting transition, similar to the case of xenon, and that the b.c.c. phase of iron is the stable phase in the Earth's inner core.

SELECTION OF CITATIONS
SEARCH DETAIL