Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38856056

ABSTRACT

Quantum Dot Cellular Automata (QCA) is an emerging trend in the field of nanoelectronics, and computing can be regarded as an alternative to the traditional complementary metal-oxide-semiconductor technology. The paper is devoted to the study of the key functional properties of the cells for molecular QCA based on mixed valence molecules. The theoretical results for the heat dissipation under the conditions of the fast nonadiabatic switching event and cell-cell response function are obtained in the framework of the quantum-mechanical vibronic approach. These results are parameterized using the previous reliable ab initio calculations performed for oxidized norbornadiene and its polycyclic derivatives with variable lengths of the bridge. The comparative analysis of the dimeric and bidimeric molecular cells composed of these compounds is given. It is underlined that the conditions of a strong non-linear response and a low heat release are contradictory. However, despite this problem, a parametric regime is proposed, which provides a low heat release in combination with a strong nonlinear response of the working cell to the electric field induced by the polarized driver cell.

2.
J Phys Chem A ; 127(43): 9030-9039, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37871334

ABSTRACT

In this article, we analyze power dissipation in the nonadiabatic switching event in mixed-valence (MV) molecular cells of quantum cellular automata (QCA) in combination with a key functional property of cells such as polarizability in the applied electric field. We demonstrate that although the requirements for a strong nonlinear response of the cell to the applied electric field and low heat release are competing from the point of view of molecular parameters, this by no means can be regarded as an insurmountable obstacle for achieving functional advantages and possibility of practical application of QCA. The general theoretical consideration is applied to the series of MV compounds exemplifying electric field-switchable MV molecules, which include oxidized norbornadiene [C7H8]+ (I) and its polycyclic derivatives [C12H12]+ (II), [C17H16]+, (III), [C27H24]+ (IV), and [C32H28]+ (V). Based on the results of high-level ab initio calculations performed for the series of compounds with variable length of the bridge connecting redox groups, we show that strongly localized cation radicals with long bridges can be easily polarized even by a fairly weak electric field. This ensures quite low power dissipation, which is shown to coexist with a rather strong nonlinear cell-cell response. We thus conclude that consideration of the series of MV dimers with controllable electron transfer provides a reasonable way to design molecule-based QCA cells with the required properties.

3.
Phys Chem Chem Phys ; 25(26): 17526-17534, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37358567

ABSTRACT

The effects of electronic and vibronic interactions on the specific heat release occurring in the course of nonadiabatic switching of the electric field polarizing a one-electron mixed-valence dimer is analyzed within the framework of the Piepho-Krausz-Schatz vibronic model. The search for an optimal parametric regime from the point of view of minimizing heat release is carried out taking into account the requirement to maintain a strong nonlinear response of the dimer to the applied electric field. Calculations of the specific heat release and the response performed in the framework of the quantum mechanical vibronic approach show that although the heat release is minimal under a weak electric field acting on the dimer in combination with weak vibronic coupling and/or strong electron transfer, such a combination of the parameters is incompatible with the requirement of a strong nonlinear response. Unlike this, for molecules exhibiting strong vibronic interactions and/or weak transfer, a rather strong nonlinear response can be obtained even with a very weak electric field, which, in turn, ensures low heat release. Thus, we can conclude that an efficient strategy to improve characteristics of molecular quantum cellular automata devices or other molecular switchable devices based on mixed-valence dimers consists in usage of molecules subjected to the action of a weak polarizing field, which are characterized by strong vibronic coupling and/or weak transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...