Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Angew Chem Int Ed Engl ; : e202410217, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881490

ABSTRACT

New photostable and bright supramolecular complexes based on cucurbit[7]uril (CB7) host and diketopyrrolopyrole (DPP) guest dyes having two positively charged 4-(trimethylammonio)phenyl groups were prepared; with spectra (H2O, abs. / emission max. 480 / 550 nm; e ~ 19 000, tfl > 4 ns), strong binding with hosts (~560 nM Kd) and a linker affording fluorescence detection of bioconjugates with antibody and nanobody. Combination of protein-functionalized DPP dye with CB7 improves photostability and affords up to 12-fold emission gain. Two-color confocal and stimulated emission depletion (STED) microscopy with 595 nm or 655 nm STED depletion lasers shows that the presence of CB7 not only leads to improved brightness and image quality, but also results in DPP becoming cell-permeable.

2.
Chem Res Toxicol ; 37(2): 285-291, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38227338

ABSTRACT

Homosalate (HMS) is an organic UV filter used in sunscreens and personal care products. Despite its widespread use and detection in environmental matrices, little is known regarding its exposure in humans. HMS is used as a mixture of cis- and trans-isomers, and we recently revealed major differences in human toxicokinetics, indicating the need to consider these isomers separately in exposure and risk assessments. In the course of these previous investigations of human HMS toxicokinetics, we identified two trans-HMS-specific and one cis-HMS-specific biomarker candidates. However, the latter lacks sensitivity due to only low amounts excreted in urine, prompting the search for another cis-HMS-specific biomarker. Our toxicokinetic investigations revealed a total of five isomers of HMS carboxylic acid metabolites (HMS-CA). Of these, only one was specifically formed from cis-HMS (HMS-CA 5), but its full identity in terms of constitution and configuration had, so far, not been elucidated. Here, we describe the synthesis of three HMS-CA isomers, of which the isomer (1R,3S,5S)/(1S,3R,5R)-3-((2-hydroxybenzoyl)oxy)-1,5-dimethylcyclohexane-1-carboxylic acid turned out to be HMS-CA 5. Taken together with two previously synthesized HMS-CA isomers, we were able to identify the constitution and configuration of all five HMS-CA isomers observed in human metabolism. We integrated the newly identified cis-HMS-specific metabolite HMS-CA 5 into our previously published human biomonitoring LC-MS/MS method. Intra- and interday precisions had coefficients of variation below 2% and 5%, respectively, and the mean relative recovery was 96%. The limit of quantification in urine was 0.02 µg L-1, enabling the quantification of HMS-CA 5 in urine samples for at least 96 h after sunscreen application. The extended method thus enables the sensitive and separate monitoring of cis- and trans-HMS in future human biomonitoring studies for exposure and risk assessment.


Subject(s)
Salicylates , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Salicylates/metabolism , Sunscreening Agents/metabolism , Chemistry Techniques, Synthetic
3.
J Med Chem ; 66(23): 15761-15775, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37991191

ABSTRACT

To discover new multifunctional agents for the treatment of cardiovascular diseases, we designed and synthesized a series of compounds with a cyclopropyl alcohol moiety and evaluated them in biochemical assays. Biological screening identified derivatives with dual activity: preventing Ca2+ leak through ryanodine receptor 2 (RyR2) and enhancing cardiac sarco-endoplasmic reticulum (SR) Ca2+ load by activation of Ca2+-dependent ATPase 2a (SERCA2a). The compounds that stabilize RyR2 at micro- and nanomolar concentrations are either structurally related to RyR-stabilizing drugs or Rycals or have structures similar to them. The novel compounds also demonstrate a good ability to increase ATP hydrolysis mediated by SERCA2a activity in cardiac microsomes, e.g., the half-maximal effective concentration (EC50) was as low as 383 nM for compound 12a, which is 1,4-benzothiazepine with two cyclopropanol groups. Our findings indicate that these derivatives can be considered as new lead compounds to improve cardiac function in heart failure.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Sarcoplasmic Reticulum , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Myocytes, Cardiac , Ryanodine Receptor Calcium Release Channel/pharmacology , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Thiazepines/chemistry , Thiazepines/pharmacology
4.
Angew Chem Int Ed Engl ; 62(41): e202302781, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37555720

ABSTRACT

New photoactivatable fluorescent dyes (rhodamine, carbo- and silicon-rhodamines [SiR]) with emission ranging from green to far red have been prepared, and their photophysical properties studied. The photocleavable 2-nitrobenzyloxycarbonyl unit with an alpha-carboxyl group as a branching point and additional functionality was attached to a polycyclic and lipophilic fluorescent dye. The photoactivatable probes having the HaloTagTM amine (O2) ligand bound with a dye core were obtained and applied for live-cell staining in stable cell lines incorporating Vimentin (VIM) or Nuclear Pore Complex Protein NUP96 fused with the HaloTag. The probes were applied in 2D (VIM, NUP96) and 3D (VIM) MINFLUX nanoscopy, as well as in superresolution fluorescence microscopy with single fluorophore activation (VIM, live-cell labeling). Images of VIM and NUPs labeled with different dyes were acquired and their apparent dimensions and shapes assessed on a lower single-digit nanometer scale. Applicability and performance of the photoactivatable dye derivatives were evaluated in terms of photoactivation rate, labeling and detection efficiency, number of detected photons per molecule and other parameters related to MINFLUX nanoscopy.


Subject(s)
Fluorescent Dyes , Silicon , Rhodamines , Microscopy, Fluorescence/methods , Cell Line
5.
Environ Res ; 226: 115609, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36870553

ABSTRACT

Neonicotinoids and neonicotinoid-like compounds (NNIs) are widely used insecticides and their ubiquitous occurrence in the environment requires methods for exposure assessment in humans. The majority of the NNIs can be divided into 6-chloropyridinyl- and 2-chlorothiazolyl-containing compounds, suggesting the formation of the group-specific metabolites 6-chloronicotinic acid (6-CNA), 2-chloro-1,3-thiazole-5-carboxylic acid (2-CTA), and their respective glycine derivatives (6-CNA-gly, 2-CTA-gly). Here, we developed and validated an analytical method based on gas chromatography coupled to mass spectrometry (GC-MS/MS) to simultaneously analyze these four metabolites in human urine. As analytical standards for the glycine conjugates were not commercially available, we synthesized 6-CNA-gly, 2-CTA-gly, and their 13C2,15N-labeled analogs for internal standardization and quantitation by stable isotope dilution. We also ensured chromatographic separation of 6-CNA and its isomer 2-CNA. Enzymatic cleavage during sample preparation was proven unnecessary. The limits of quantitation were between 0.1 (6-CNA) and 0.4 µg/L (2-CTA-gly) and the repeatability was satisfactory (coefficient of variation was <19% over the calibration range). We analyzed 38 spot urine samples from the general population and were able to quantify 6-CNA-gly in 58% of the samples (median 0.2 µg/L). In contrast, no 6-CNA could be detected. The results are in line with well-known metabolic pathways specific in humans, that, compared to rodents, favor the formation and excretion of phase-II-metabolites (glycine derivatives) rather than phase-I metabolites (free carboxylic acids). Nevertheless, the exact source of exposure (i.e., the specific NNI) remains elusive in the general population, may even vary quantitatively between different NNIs, and also might be regional specific based on the respective use of individual NNIs. In sum, we developed a robust and sensitive analytical method for the determination of four group-specific NNI metabolites.


Subject(s)
Insecticides , Tandem Mass Spectrometry , Humans , Neonicotinoids , Tandem Mass Spectrometry/methods , Carboxylic Acids , Glycine , Insecticides/urine
6.
Anal Chim Acta ; 1239: 340680, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628758

ABSTRACT

Neonicotinoids and neonicotinoid-like compounds (NNIs) are frequently used insecticides worldwide and exposure scenarios can vary widely between countries and continents. We have developed a specific and robust analytical method based on liquid chromatography-electrospray tandem mass spectrometry coupled to online-SPE (online-SPE-LC-ESI-MS-MS) to analyze the seven most important NNIs from a global perspective together with nine of their key metabolites in human urine. The method also includes the neonicotinoid-like flupyradifurone (FLUP), an important future substitute for classical neonicotinoids, and two of its major human metabolites, 5-hydroxy- and N-desfluoroethyl-FLUP. Validation of the method was carried out using pooled urine samples from low-dose human metabolism studies and spiked urine samples with a wide range of creatinine concentrations. Depending on the analyte, the limits of quantitation were between 0.06 and 2.1 µg L-1, the inter-day and intra-day imprecisions ≤6%, and the mean relative recoveries between 89% and 112%. The method enabled us to successfully quantify NNIs and their metabolites at current environmental exposures in 34 individuals of the German general population and 43 pregnant women from Brazil with no known occupational exposures to NNIs.


Subject(s)
Insecticides , Tandem Mass Spectrometry , Humans , Female , Pregnancy , Neonicotinoids/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Insecticides/analysis , Chromatography, Liquid
7.
J Am Chem Soc ; 144(31): 14235-14247, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35895999

ABSTRACT

Photoswitchable fluorophores─proteins and synthetic dyes─whose emission is reversibly switched on and off upon illumination, are powerful probes for bioimaging, protein tracking, and super-resolution microscopy. Compared to proteins, synthetic dyes are smaller and brighter, but their photostability and the number of achievable switching cycles in aqueous solutions are lower. Inspired by the robust photoswitching system of natural proteins, we designed a supramolecular system based on a fluorescent diarylethene (DAE) and cucurbit[7]uril (CB7) (denoted as DAE@CB7). In this assembly, the photoswitchable DAE molecule is encapsulated by CB7 according to the host-guest principle, so that DAE is protected from the environment and its fluorescence brightness and fatigue resistance in pure water improved. The fluorescence quantum yield (Φfl) increased from 0.40 to 0.63 upon CB7 complexation. The photoswitching of the DAE@CB7 complex, upon alternating UV and visible light irradiations, can be repeated 2560 times in aqueous solution before half-bleaching occurs (comparable to fatigue resistance of the reversibly photoswitchable proteins), while free DAE can be switched on and off only 80 times. By incorporation of reactive groups [maleimide and N-hydroxysuccinimidyl (NHS) ester], we prepared bioconjugates of DAE@CB7 with antibodies and demonstrated both specific labeling of intracellular proteins in cells and the reversible on/off switching of the probes in cellular environments under irradiations with 355 nm/485 nm light. The bright emission and robust photoswitching of DAE-Male3@CB7 and DAE-NHS@CB7 complexes (without exclusion of air oxygen and addition of any stabilizing/antifading reagents) enabled confocal and super-resolution RESOLFT (reversible saturable optical fluorescence transitions) imaging with apparent 70-90 nm optical resolution.


Subject(s)
Bridged-Ring Compounds , Imidazoles , Fluorescence , Fluorescent Dyes , Heterocyclic Compounds, 2-Ring , Imidazolidines , Macrocyclic Compounds , Water
8.
Chembiochem ; 23(18): e202200395, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35838445

ABSTRACT

A bright and photostable fluorescent dye with a disulfide (S-S) linker and maleimide group (Rho594-S2-mal), as cleavable and reactive sites, was synthesized and conjugated with anti-GFP nanobodies (NB). The binding of EGFP (FRET donor) with anti-GFP NB labeled with one or two Rho594-S2-mal residues was studied in vitro and in cellulo. The linker was cleaved with dithiothreitol recovering the donor (FP) signal. The bioconjugates (FP-NB-dye) were applied in FRET-FLIM assays, confocal imaging, and superresolution STED microscopy.


Subject(s)
Fluorescence Resonance Energy Transfer , Single-Domain Antibodies , Disulfides , Dithiothreitol , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Maleimides , Microscopy, Fluorescence/methods
9.
J Org Chem ; 87(1): 56-65, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34919387

ABSTRACT

Two fluorophores bound with a short photoreactive bridge are fascinating structures and remained unexplored. To investigate the synthesis and photolysis of such dyes, we linked two rhodamine dyes via a diazoketone bridge (-COCN2-) attached to position 5' or 6' of the pendant phenyl rings. For that, the mixture of 5'- or 6'-bromo derivatives of the parent dye was prepared, transformed into 1,2-diarylacetylenes, hydrated to 1,2-diarylethanones, and converted to diazoketones Ar1COCN2Ar2. The high performance liquid chromatography (HPLC) separation gave four individual regioisomers of Ar1COCN2Ar2. Photolysis of the model compound─C6H5COCN2C6H5─in aqueous acetonitrile at pH 7.3 and under irradiation with 365 nm light provided diphenylacetic acid amide (Wolff rearrangement). However, under the same conditions, Ar1COCN2Ar2 gave mainly α-diketones Ar1COCOAr2. The migration ability of the very bulky dye residues was low, and the Wolff rearrangement did not occur. We observed only moderate fluorescence increase, which may be explained by the insufficient quenching ability of diazoketone bridge (-COCN2-) and its transformation into another (weaker) quencher, 1,2-diarylethane-1,2-dione.


Subject(s)
Fluorescent Dyes , Water , Photolysis , Rhodamines , Spectrometry, Fluorescence
10.
Chem Res Toxicol ; 34(11): 2392-2403, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34735116

ABSTRACT

Nonylphenol (NP) is an endocrine-disrupting anthropogenic chemical that is ubiquitous in the environment. Human biomonitoring data and knowledge on internal NP exposure are still sparse, and its human metabolism is largely unknown. Therefore, in this study, we investigated human metabolism and urinary excretion of NP. Three male volunteers received a single oral dose of 1 mg 13C6-labeled NP (10.6-11.7 µg/kg body weight). Consecutive full urine voids were collected for 48 h. A metabolite screening identified nine ring- and/or side chain-oxidized metabolites. We chose the most promising hits, the alkyl chain-oxidized metabolites hydroxy-NP (OH-NP) and oxo-NP, for quantitative investigation next to the parent NP. For this purpose, we newly synthesized specific n - 1-oxidized monoisomeric analytical standards. Quantification of the polyisomeric metabolites was performed via online-solid phase extraction-LC-MS/MS with stable isotope dilution using a previously published consensus method. Alkyl chain hydroxylation (OH-NP) constituted the major metabolism pathway representing 43.7 or 62.2% (depending on the mass transition used for quantification) of the NP dose excreted in urine. The urinary excretion fraction (FUE) for oxo-NP was 6.0 or 9.3%. The parent NP, quantified via an analogous isomeric 13C6-NP standard, represented 6.6%. All target analytes were excreted predominately as glucuronic acid conjugates. Excretion was rather quick, with concentration maxima in urine 2.3-3.4 h after dosing and biphasic elimination kinetics (elimination half-times first phase: 1.0-1.5 h and second phase: 5.2-6.8 h). Due to its high FUE and insusceptibility to external contamination (contrary to parent NP), OH-NP represents a robust and sensitive novel exposure biomarker for NP. The novel FUEs enable to robustly back-calculate the overall NP intakes from urinary metabolite levels in population samples for a well-informed cumulative exposure and risk assessment.


Subject(s)
Phenols/metabolism , Phenols/urine , Administration, Oral , Adult , Chromatography, Liquid , Healthy Volunteers , Humans , Kinetics , Male , Middle Aged , Molecular Structure , Phenols/administration & dosage , Tandem Mass Spectrometry
11.
Anal Chim Acta ; 1176: 338754, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34399889

ABSTRACT

Homosalate (HMS) is an organic UV filter used in sunscreens and personal care products worldwide. It has been detected in various environmental matrices and in humans after application of HMS-containing products. However, sufficient data on the internal HMS exposure in humans is currently not available. Thus, we aimed at providing an analytical method for the sensitive determination of specific HMS metabolites in human urine. We describe the synthesis of analytical standards for the four oxidative HMS metabolites included in this method: 5-((2-hydroxybenzoyl)oxy)-3,3-dimethylcyclohexane-1-carboxylic acid (HMS-CA) and 3-hydroxy-3,5,5-trimethylcyclohexyl 2-hydroxybenzoate (3OH-HMS), as cis- and trans-isomers, respectively. After enzymatic hydrolysis, urine samples were analyzed using liquid chromatography-electrospray ionization-triple quadrupole-tandem mass spectrometry, including turbulent flow chromatography for online sample cleanup and analyte enrichment (online-SPE-LC-MS/MS). Quantification was performed by stable isotope dilution analysis, using deuterium-labeled HMS-CA as internal standards (cis and trans). Limits of quantification of 0.02-0.04 µg L-1 were sufficiently low to quantify the HMS metabolites for up to 96 h (trans-HMS-CA), 48 h (cis-HMS-CA and 3OH-trans-HMS), and 24 h (3OH-cis-HMS) after a pilot dermal application of a commercially available sunscreen in one human volunteer, showing clear elimination kinetics. Furthermore, in a German pilot population (n = 35), HMS metabolites were above the LOQ precisely in those three individuals who had applied sunscreen within the previous five days, thus corroborating the specificity of the identified metabolites as biomarkers of HMS exposure. The method is currently used in a human metabolism study and will be applied in future population-scale human biomonitoring studies.


Subject(s)
Salicylates , Tandem Mass Spectrometry , Chromatography, Liquid , Humans , Sunscreening Agents
12.
Molecules ; 26(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070063

ABSTRACT

Amlodipine, a unique long-lasting calcium channel antagonist and antihypertensive drug, has weak fluorescence in aqueous solutions. In the current paper, we show that direct visualization of amlodipine in live cells is possible due to the enhanced emission in cellular environment. We examined the impact of pH, polarity and viscosity of the environment as well as protein binding on the spectral properties of amlodipine in vitro, and used quantum chemical calculations for assessing the mechanism of fluorescence quenching in aqueous solutions. The confocal fluorescence microscopy shows that the drug readily penetrates the plasma membrane and accumulates in the intracellular vesicles. Visible emission and photostability of amlodipine allow confocal time-lapse imaging and the drug uptake monitoring.


Subject(s)
Amlodipine/pharmacology , Microscopy, Fluorescence , Amlodipine/chemistry , Cell Survival/drug effects , HEK293 Cells , Humans , Indoles/metabolism , Microscopy, Confocal , Models, Biological , Molecular Conformation , Solutions
13.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33782137

ABSTRACT

The use of photoswitchable fluorescent diarylethenes (fDAEs) as protein labels in fluorescence microscopy and nanoscopy has been limited by labeling inhomogeneity and the need for ultraviolet light for fluorescence activation (on-switching). To overcome these drawbacks, we prepared "turn-on mode" fDAEs featuring thienyl substituents, multiple polar residues, and a reactive maleimide group in the core structure. Conjugates with antibodies and nanobodies displayed complete on-switching and excitation with violet (405 nm) and yellow-green (<565 nm) light, respectively. Besides, they afforded high signal-to-noise ratios and low unspecific labeling in fluorescence imaging. Irradiation with visible light at 532 nm or 561 nm led to transient on-off switching ("blinking") of the fDAEs of double-labeled nanobodies so that nanoscale superresolution images were readily attained through switching and localization of individual fluorophores.


Subject(s)
Fluorescent Dyes/chemical synthesis , Photochemical Processes , Antibodies/chemistry , Cell Line, Tumor , Fluorescent Dyes/radiation effects , Humans , Maleimides/chemistry , Microscopy, Fluorescence/methods , Sulfhydryl Compounds/chemistry , Ultraviolet Rays
14.
Chemistry ; 27(19): 6070-6076, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33496998

ABSTRACT

Formylation of 2,6-dichloro-5-R-nicotinic acids at C-4 followed by condensation with 3-hydroxy-N,N-dimethylaniline gave analogs of the popular TAMRA fluorescent dye with a 2,6-dichloro-5-R-nicotinic acid residues (R=H, F). The following reaction with thioglycolic acid is selective, involves only one chlorine atom at the carbon between pyridine nitrogen and the carboxylic acid group and affords new rhodamine dyes absorbing at 564/ 573 nm and emitting at 584/ 597 nm (R=H/ F, in aq. PBS). Conjugates of the dyes with "small molecules" provided specific labeling (covalent and non-covalent) of organelles as well as of components of the cytoskeleton in living cells and were combined with fluorescent probes prepared from 610CP and SiR dyes and applied in two-color STED microscopy with a 775 nm STED laser.


Subject(s)
Fluorescent Dyes , Lasers , Color , Microscopy, Fluorescence , Rhodamines
15.
Angew Chem Int Ed Engl ; 60(7): 3720-3726, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33245831

ABSTRACT

A compact and negatively charged acceptor group, N-(cyanamino)sulfonyl, is introduced for dye design and its influence on the absorption and emission spectra of the "push-pull" chromophores is demonstrated with 1,3,6-tris[(cyanamino)sulfonyl]-8-aminopyrene. The new sulfonamides, including O-phosphorylated (3-hydroxyazetidine)-N-sulfonyl, are negatively charged electron acceptors and auxochromes. 1-Aminopyrenes decorated with the new sulfonamides have three or six negative charges (pH ≥8), low m/z ratios, high mobilities in an electric field, and yellow to orange emission. We labeled maltodextrin oligomers by reductive amination, separated the products by electrophoresis, and demonstrated their high brightness in a commercial DNA analyzer and the distribution of the emission signal among the detection channels.

16.
Chemistry ; 27(1): 451-458, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33095954

ABSTRACT

The use of photoactivatable dyes in STED microscopy has so far been limited by two-photon activation through the STED beam and by the fact that photoactivatable dyes are poorly solvable in water. Herein, we report ONB-2SiR, a fluorophore that can be both photoactivated in the UV and specifically de-excited by STED at 775 nm. Likewise, we introduce a conjugation and purification protocol to effectively label primary and secondary antibodies with moderately water-soluble dyes. Greatly reducing dye aggregation, our technique provides a defined and tunable degree of labeling, and improves the imaging performance of dye conjugates in general.


Subject(s)
Fluorescent Dyes , Microscopy, Fluorescence , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Ionophores/chemistry , Photochemical Processes
17.
J Org Chem ; 85(11): 7267-7275, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32418421

ABSTRACT

The nanometer thickness of filaments and the dynamic behavior of actin-a protein playing a crucial role in cellular function and motility-make it attractive for observation with super-resolution optical microscopy. We developed the solution-phase synthesis of des-bromo-des-methyl-jasplakinolide-lysine, used as the "recognition unit" (ligand) for F-actin in living cells. The first amino acid-Fmoc-O-TIPS-ß-tyrosine-was prepared in 78% yield (two steps in one pot). The new solution-phase synthesis involves 2-phenylisopropyl protection of the carboxyl group and does not require excesses of commercially unavailable amino acids. The overall yield of the target intermediate obtained in nine steps is about 8%. The 2-phenylisopropyl group can be cleaved from carboxyl with 2-3% (v/v) of TFA in acetonitrile (0-10 °C), without affecting TIPS protection of the phenolic hydroxyl in ß-tyrosine and N-Boc protection in lysine. Des-bromo-des-methyl-jasplakinolide-lysine was coupled with red-emitting fluorescent dyes 580CP and 610CP (via 6-aminohexanoate linker). Actin in living cells was labeled with 580CP and 610CP probes, and the optical resolution measured as full width at half-maximum of line profiles across actin fibers was found to be 300-400 nm and 100 nm under confocal and STED conditions, respectively. The solution-phase synthesis of des-bromo-des-methyl-jasplakinolide-lysine opens a way to better fluorescent probe perspective for actin imaging.


Subject(s)
Actins , Depsipeptides , Depsipeptides/pharmacology , Fluorescent Dyes , Microscopy
18.
Anal Chem ; 92(7): 5329-5336, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32154706

ABSTRACT

Capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) has become a key method in high-throughput glycan analysis. At present, CGE-LIF relies on the green fluorophore 8-aminopyrene-1,3,6-trisulfonic acid (APTS). However, APTS has moderate reactivity in labeling of glycans and a fixed selectivity profile. Here, we report synthesis of red-emitting and highly reactive fluorescent tags for glycan derivatization. The design is based on a 9-aminoacridine scaffold with various acceptor groups at C-2 (CN, SO2R) and a primary amino group at C-7 for conjugation via reductive amination. These reactive dyes exhibit absorption maxima close to 450 nm and emission above 600 nm. They readily undergo conjugation with reducing sugars at the desired 1:1 stoichiometry. The red emission of conjugates with a maximum at 610-630 nm can be observed under excitation with 488 nm light and detected separately from the APTS-labeled oligosaccharides. Phosphorylated 7,9-diaminoacridine-2-SO2R derivatives with variable amounts of negative charges provide high mobilities of glycoconjugates on polyacrylamide gel electrophoresis (PAGE), as compared with those of APTS. We further demonstrate their utility by labeling and separating a maltodextrin ladder and sialyllactose isomers. The new dyes are expected to cross-validate and increase the glycan identification precision in CGE-LIF and help to reveal "heavy" glycans, yet undetectable with the APTS label.


Subject(s)
Acridines/chemistry , Fluorescent Dyes/chemistry , Polysaccharides/analysis , Polysaccharides/isolation & purification , Spectrometry, Fluorescence/methods , Alkylation , Amination , Color , Optical Phenomena , Oxidation-Reduction , Phosphorylation , Polysaccharides/chemistry
19.
Chem Commun (Camb) ; 56(14): 2198-2201, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-31976494

ABSTRACT

Compact "push-pull" photochromic diaryethenes (DAEs) with unsymmetric oxidation pattern of the benzothiophene core display multicolour fluorescence switching, as a result of dual emission from both "open" and "closed" forms. These DAEs also present an unprecedented photo-fatigue resistance.

20.
Angew Chem Int Ed Engl ; 59(14): 5505-5509, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31895495

ABSTRACT

1-Aminopyrenes with three ω-hydroxylated N-alkylsulfonamido or alkylsulfonyl residues in positions 3, 6, and 8 were prepared, O-phosphorylated, and applied for reductive amination of oligosaccharides. The dyes (ϵ≈20 000 m-1 cm-1 ) with six negative charges (pH≥8) and low m/z ratios enable labeling and fluorescence detection of reducing sugars (glycans) related to the most structurally and functionally diverse class of natural products. Under excitation with a 488 nm laser, the new glycoconjugates emit yellow light of about 560 nm, outperforming (with respect to brightness and faster electrophoretic mobilities) the corresponding APTS derivatives (benchmark dye with green emission in conjugates).

SELECTION OF CITATIONS
SEARCH DETAIL
...