Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
medRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699333

ABSTRACT

INTRODUCTION: Transcriptome-wide Association Studies (TWAS) extend genome-wide association studies (GWAS) by integrating genetically-regulated gene expression models. We performed the most powerful AD-TWAS to date, using summary statistics from cis -eQTL meta-analyses and the largest clinically-adjudicated Alzheimer's Disease (AD) GWAS. METHODS: We implemented the OTTERS TWAS pipeline, leveraging cis -eQTL data from cortical brain tissue (MetaBrain; N=2,683) and blood (eQTLGen; N=31,684) to predict gene expression, then applied these models to AD-GWAS data (Cases=21,982; Controls=44,944). RESULTS: We identified and validated five novel gene associations in cortical brain tissue ( PRKAG1 , C3orf62 , LYSMD4 , ZNF439 , SLC11A2 ) and six genes proximal to known AD-related GWAS loci (Blood: MYBPC3 ; Brain: MTCH2 , CYB561 , MADD , PSMA5 , ANXA11 ). Further, using causal eQTL fine-mapping, we generated sparse models that retained the strength of the AD-TWAS association for MTCH2 , MADD , ZNF439 , CYB561 , and MYBPC3 . DISCUSSION: Our comprehensive AD-TWAS discovered new gene associations and provided insights into the functional relevance of previously associated variants.

2.
medRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645000

ABSTRACT

The emerging field of precision nutrition is based on the notion that inter-individual responses across diets of different calorie-macronutrient content may contribute to inter-individual differences in metabolism, adiposity, and weight gain. Free-living diet studies have been traditionally challenged by difficulties in controlling adherence to prescribed calories and macronutrient content and rarely allow a period of metabolic stability prior to metabolic measures (to minimize influences of weight changes). In this context, key physiologic measures central to precision nutrition responses may be most precisely quantified via whole room indirect calorimetry over 24-h, in which precise control of activity and nutrition can be achieved. In addition, these studies represent unique "N of 1" human crossover metabolic-physiologic experiments during which specific molecular pathways central to nutrient metabolism may be discerned. Here, we quantified 263 circulating metabolites during a ≈40-day inpatient admission in which up to 94 participants underwent seven monitored 24-h nutritional interventions of differing macronutrient composition in a whole-room indirect calorimeter to capture precision metabolic responses. Broadly, we observed heterogenous responses in metabolites across dietary chambers, with the exception of carnitines which tracked with 24-h respiratory quotient. We identified excursions in shared metabolic species (e.g., carnitines, glycerophospholipids, amino acids) that mapped onto gold-standard calorimetric measures of substrate oxidation preference and lipid availability. These findings support a coordinated metabolic-physiologic response to nutrition, highlighting the relevance of these controlled settings to uncover biological pathways of energy utilization during precision nutrition studies.

3.
J Alzheimers Dis ; 98(3): 1053-1067, 2024.
Article in English | MEDLINE | ID: mdl-38489177

ABSTRACT

Background: The X chromosome is often omitted in disease association studies despite containing thousands of genes that may provide insight into well-known sex differences in the risk of Alzheimer's disease (AD). Objective: To model the expression of X chromosome genes and evaluate their impact on AD risk in a sex-stratified manner. Methods: Using elastic net, we evaluated multiple modeling strategies in a set of 175 whole blood samples and 126 brain cortex samples, with whole genome sequencing and RNA-seq data. SNPs (MAF > 0.05) within the cis-regulatory window were used to train tissue-specific models of each gene. We apply the best models in both tissues to sex-stratified summary statistics from a meta-analysis of Alzheimer's Disease Genetics Consortium (ADGC) studies to identify AD-related genes on the X chromosome. Results: Across different model parameters, sample sex, and tissue types, we modeled the expression of 217 genes (95 genes in blood and 135 genes in brain cortex). The average model R2 was 0.12 (range from 0.03 to 0.34). We also compared sex-stratified and sex-combined models on the X chromosome. We further investigated genes that escaped X chromosome inactivation (XCI) to determine if their genetic regulation patterns were distinct. We found ten genes associated with AD at p < 0.05, with only ARMCX6 in female brain cortex (p = 0.008) nearing the significance threshold after adjusting for multiple testing (α = 0.002). Conclusions: We optimized the expression prediction of X chromosome genes, applied these models to sex-stratified AD GWAS summary statistics, and identified one putative AD risk gene, ARMCX6.


Subject(s)
Alzheimer Disease , Humans , Male , Female , Alzheimer Disease/genetics , Transcriptome , Genetic Predisposition to Disease/genetics , X Chromosome , Brain , Polymorphism, Single Nucleotide/genetics , Genome-Wide Association Study
4.
Arterioscler Thromb Vasc Biol ; 44(4): 969-975, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385288

ABSTRACT

BACKGROUND: Preeclampsia is a hypertensive disorder of pregnancy characterized by widespread vascular inflammation. It occurs frequently in pregnancy, often without known risk factors, and has high rates of maternal and fetal morbidity and mortality. Identification of biomarkers that predict preeclampsia and its cardiovascular sequelae before clinical onset, or even before pregnancy, is a critical unmet need for the prevention of adverse pregnancy outcomes. METHODS: We explored differences in cardiovascular proteomics (Olink Explore 384) in 256 diverse pregnant persons across 2 centers (26% Hispanic, 21% Black). RESULTS: We identified significant differences in plasma abundance of markers associated with angiogenesis, blood pressure, cell adhesion, inflammation, and metabolism between individuals delivering with preeclampsia and controls, some of which have not been widely described previously and are not represented in the preeclampsia placental transcriptome. While we observed a broadly similar pattern in early (<34 weeks) versus late (≥34 weeks) preeclampsia, several proteins related to hemodynamic stress, hemostasis, and immune response appeared to be more highly dysregulated in early preeclampsia relative to late preeclampsia. CONCLUSIONS: These results demonstrate the value of performing targeted proteomics using a panel of cardiovascular biomarkers to identify biomarkers relevant to preeclampsia pathophysiology and highlight the need for larger multiomic studies to define modifiable pathways of surveillance and intervention upstream to preeclampsia diagnosis.


Subject(s)
Cardiovascular Diseases , Pre-Eclampsia , Pregnancy , Female , Humans , Pre-Eclampsia/diagnosis , Placenta , Pregnancy Outcome , Biomarkers , Inflammation/complications , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/complications , Placenta Growth Factor
5.
Nat Med ; 30(2): 480-487, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38374346

ABSTRACT

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.


Subject(s)
Chronic Disease , Genetic Risk Score , Population Health , Adult , Child , Humans , Communication , Genetic Predisposition to Disease , Genome-Wide Association Study , Risk Factors , United States
6.
medRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352394

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals from diverse, at-risk populations across the metabolic health spectrum, demonstrating reproducible diagnostic performance and specifying both known and novel metabolic pathways relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was associated with a protection from MASLD and its related multi-system metabolic consequences in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select targets in human liver across stages of steatosis. We replicated several top relations from proteomics and spatial tissue transcriptomics in a humanized "liver-on-a-chip" model of MASLD, highlighting the power of a full translational approach to discovery in MASLD. Collectively, these results underscore utility of blood-based proteomics as a dynamic "liquid biopsy" of human liver relevant to clinical biomarker and mechanistic applications.

7.
Nature ; 624(7992): 621-629, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38049589

ABSTRACT

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Expression Profiling , Gene Regulatory Networks , Genetic Predisposition to Disease , Islets of Langerhans , Humans , Case-Control Studies , Cell Separation , Chromatin/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Insulin Secretion , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Reproducibility of Results
8.
Res Sq ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37790303

ABSTRACT

Rare genetic diseases are typically studied in referral populations, resulting in underdiagnosis and biased assessment of penetrance and phenotype. To address this, we developed a generalizable method of genotype inference based on distant relatedness and deployed this to identify undiagnosed Type 5 Long QT Syndrome (LQT5) rare variant carriers in a non-referral population. We identified 9 LQT5 families referred to a single specialty clinic, each carrying p.Asp76Asn, the most common LQT5 variant. We uncovered recent common ancestry and a single shared haplotype among probands. Application to a non-referral population of 69,819 BioVU biobank subjects identified 22 additional subjects sharing this haplotype, subsequently confirmed to carry p.Asp76Asn. Referral and non-referral carriers had prolonged QTc compared to controls, and, among carriers, QTc polygenic score additively associated with QTc prolongation. Thus, our novel analysis of shared chromosomal segments identified undiagnosed cases of genetic disease and refined the understanding of LQT5 penetrance and phenotype.

9.
Cardiovasc Diabetol ; 22(1): 231, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653519

ABSTRACT

BACKGROUND: Adipokines are hormones secreted from adipose tissue and are associated with cardiometabolic diseases (CMD). Functional differences between adipokines (leptin, adiponectin, and resistin) are known, but inconsistently reported associations with CMD and lack of studies in Hispanic populations are research gaps. We investigated the relationship between subclinical atherosclerosis and multiple adipokine measures. METHODS: Cross-sectional data from the Cameron County Hispanic Cohort (N = 624; mean age = 50; Female = 70.8%) were utilized to assess associations between adipokines [continuous measures of adiponectin, leptin, resistin, leptin-to-adiponectin ratio (LAR), and adiponectin-resistin index (ARI)] and early atherosclerosis [carotid-intima media thickness (cIMT)]. We adjusted for sex, age, body mass index (BMI), smoking status, cytokines, fasting blood glucose levels, blood pressure, lipid levels, and medication usage in the fully adjusted linear regression model. We conducted sexes-combined and sex-stratified analyses to account for sex-specificity and additionally tested whether stratification of participants by their metabolic status (metabolically elevated risk for CMD as defined by having two or more of the following conditions: hypertension, dyslipidemia, insulin resistance, and inflammation vs. not) influenced the relationship between adipokines and cIMT. RESULTS: In the fully adjusted analyses, adiponectin, leptin, and LAR displayed significant interaction by sex (p < 0.1). Male-specific associations were between cIMT and LAR [ß(SE) = 0.060 (0.016), p = 2.52 × 10-4], and female-specific associations were between cIMT and adiponectin [ß(SE) = 0.010 (0.005), p = 0.043] and ARI [ß(SE) = - 0.011 (0.005), p = 0.036]. When stratified by metabolic health status, the male-specific positive association between LAR and cIMT was more evident among the metabolically healthy group [ß(SE) = 0.127 (0.015), p = 4.70 × 10-10] (p for interaction by metabolic health < 0.1). However, the female-specific associations between adiponectin and cIMT and ARI and cIMT were observed only among the metabolically elevated risk group [ß(SE) = 0.014 (0.005), p = 0.012 for adiponectin; ß(SE) = - 0.015 (0.006), p = 0.013 for ARI; p for interaction by metabolic health < 0.1]. CONCLUSION: Associations between adipokines and cIMT were sex-specific, and metabolic health status influenced the relationships between adipokines and cIMT. These heterogeneities by sex and metabolic health affirm the complex relationships between adipokines and atherosclerosis.


Subject(s)
Adipokines , Atherosclerosis , Female , Male , Humans , Middle Aged , Leptin , Resistin , Adiponectin , Carotid Intima-Media Thickness , Cross-Sectional Studies , Hispanic or Latino
10.
J Clin Transl Sci ; 7(1): e154, 2023.
Article in English | MEDLINE | ID: mdl-37528943

ABSTRACT

Minority populations are largely absent from clinical research trials. The neglect of these populations has become increasingly apparent, with escalating cancer burdens and chronic disease. The challenges to recruitment of minorities in the United States are multiple including trust or lack thereof. Keys to successful recruitment are responding to community issues, its history, beliefs, and its social and economic pressures. The strategy we have used in many low-income, sometimes remote, communities is to recruit staff from the same community and train them in the required basic research methods. They are the first line of communication. After our arrival in the Texas Rio Grande Valley in 2001, we applied these principles learned over years of global research, to studies of chronic diseases. Beginning in 2004, we recruited and trained a team of local women who enrolled in a cohort of over five thousand Mexican Americans from randomly selected households. This cohort is being followed, and the team has remained, acquiring not only advanced skills (ultrasound, FibroScan, retinal photos, measures of cognition, etc.) but capacity to derive key health information. Currently, we are participating in multiple funded studies, including an NIH clinical trial, liver disease, obesity, and diabetes using multiomics aimed at developing precision medicine approaches to chronic disease prevention and treatment.

11.
J Endod ; 49(10): 1276-1288, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499862

ABSTRACT

INTRODUCTION: Apical periodontitis (AP) is a common consequence of root canal infection leading to periapical bone resorption. Microbial and host genetic factors and their interactions have been shown to play a role in AP development and progression. Variations in a few genes have been reported in association with AP; however, the lack of genome-wide studies has hindered progress in understanding the molecular mechanisms involved. Here, we report the first genome-wide association study of AP in a large and well-characterized population. METHODS: Male and female adults (n = 932) presenting with deep caries and AP (cases), or deep caries without AP (controls) were included. Genotyping was performed using the Illumina Expanded Multi-Ethnic Genotyping Array (MEGA). Single-variant association testing was performed adjusting for sex and 5 principal components. Subphenotype association testing, analyses of genetically regulated gene expression, polygenic risk score, and phenome-wide association (PheWAS) analyses were also conducted. RESULTS: Eight loci reached near genome-wide significant association with AP (P < 5 × 10-6); gene-focused analyses replicated 3 previously reported associations (P < 8.9 × 10-5). Sex-specific and subphenotype-specific analyses revealed additional significant associations with variants genome-wide. Functionally oriented gene-based analyses revealed 8 genes significantly associated with AP (P < 5 × 10-5), and PheWAS analysis revealed 33 phecodes associated with AP risk score (P < 3.08 × 10-5). CONCLUSIONS: This study identified novel genes/loci contributing to AP and specific contributions to AP risk in men and women. Importantly, we identified additional systemic conditions significantly associated with AP risk. Our findings provide strong evidence for host-mediated effects on AP susceptibility.


Subject(s)
Genome-Wide Association Study , Periapical Periodontitis , Adult , Humans , Male , Female , Periapical Periodontitis/genetics , Risk Factors , Root Canal Therapy , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics
12.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37333116

ABSTRACT

Background: The X chromosome is often omitted in disease association studies despite containing thousands of genes which may provide insight into well-known sex differences in the risk of Alzheimer's Disease. Objective: To model the expression of X chromosome genes and evaluate their impact on Alzheimer's Disease risk in a sex-stratified manner. Methods: Using elastic net, we evaluated multiple modeling strategies in a set of 175 whole blood samples and 126 brain cortex samples, with whole genome sequencing and RNA-seq data. SNPs (MAF>0.05) within the cis-regulatory window were used to train tissue-specific models of each gene. We apply the best models in both tissues to sex-stratified summary statistics from a meta-analysis of Alzheimer's disease Genetics Consortium (ADGC) studies to identify AD-related genes on the X chromosome. Results: Across different model parameters, sample sex, and tissue types, we modeled the expression of 217 genes (95 genes in blood and 135 genes in brain cortex). The average model R2 was 0.12 (range from 0.03 to 0.34). We also compared sex-stratified and sex-combined models on the X chromosome. We further investigated genes that escaped X chromosome inactivation (XCI) to determine if their genetic regulation patterns were distinct. We found ten genes associated with AD at p 0.05, with only ARMCX6 in female brain cortex (p = 0.008) nearing the significance threshold after adjusting for multiple testing (α = 0.002). Conclusions: We optimized the expression prediction of X chromosome genes, applied these models to sex-stratified AD GWAS summary statistics, and identified one putative AD risk gene, ARMCX6.

13.
medRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333246

ABSTRACT

Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.

14.
medRxiv ; 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37163006

ABSTRACT

Importance: The diagnosis and study of rare genetic disease is often limited to referral populations, leading to underdiagnosis and a biased assessment of penetrance and phenotype. Objective: To develop a generalizable method of genotype inference based on distant relatedness and to deploy this to identify undiagnosed Type 5 Long QT Syndrome (LQT5) rare variant carriers in a non-referral population. Participants: We identified 9 LQT5 probands and 3 first-degree relatives referred to a single Genetic Arrhythmia clinic, each carrying D76N (p.Asp76Asn), the most common variant implicated in LQT5. The non-referral population consisted of 69,879 ancestry-matched subjects in BioVU, a large biobank that links electronic health records to dense array data. Participants were enrolled from 2007-2022. Data analysis was performed in 2022. Exposures: We developed and applied a novel approach to genotype inference (Distant Relatedness for Identification and Variant Evaluation, or DRIVE) to identify shared, identical-by-descent (IBD) large chromosomal segments in array data. Main Outcomes and Measures: We sought to establish genetic relatedness among the probands and to use genomic segments underlying D76N to identify other potential carriers in BioVU. We then further studied the role of D76N in LQT5 pathogenesis. Results: Genetic reconstruction of pedigrees and distant relatedness detection among clinic probands using DRIVE revealed shared recent common ancestry and identified a single long shared haplotype. Interrogation of the non-referral population in BioVU identified a further 23 subjects sharing this haplotype, and sequencing confirmed D76N carrier status in 22, all previously undiagnosed with LQT5. The QTc was prolonged in D76N carriers compared to BioVU controls, with 40% penetrance of QTc ≥ 480 msec. Among D76N carriers, a QTc polygenic score was additively associated with QTc prolongation. Conclusions and Relevance: Detection of IBD shared chromosomal segments around D76N enabled identification of distantly related and previously undiagnosed rare-variant carriers, demonstrated the contribution of polygenic risk to monogenic disease penetrance, and further established LQT5 as a primary arrhythmia disorder. Analysis of shared chromosomal regions spanning disease-causing mutations can identify undiagnosed cases of genetic diseases.

15.
Alzheimers Dement ; 19(11): 4886-4895, 2023 11.
Article in English | MEDLINE | ID: mdl-37051669

ABSTRACT

BACKGROUND: Haptoglobin (HP) is an antioxidant of apolipoprotein E (APOE), and previous reports have shown HP binds with APOE and amyloid beta (Aß) to aid its clearance. A common structural variant of the HP gene distinguishes it into two alleles: HP1 and HP2. METHODS: HP genotypes were imputed in 29 cohorts from the Alzheimer's Disease Genetics Consortium (N = 20,512). Associations between the HP polymorphism and Alzheimer's disease (AD) risk and age of onset through APOE interactions were investigated using regression models. RESULTS: The HP polymorphism significantly impacts AD risk in European-descent individuals (and in meta-analysis with African-descent individuals) by modifying both the protective effect of APOE ε2 and the detrimental effect of APOE ε4. The effect is particularly significant among APOE ε4 carriers. DISCUSSION: The effect modification of APOE by HP suggests adjustment and/or stratification by HP genotype is warranted when APOE risk is considered. Our findings also provided directions for further investigations on potential mechanisms behind this association.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Haptoglobins/genetics , Amyloid beta-Peptides/genetics , Alleles , Apolipoproteins E/genetics , Genotype
16.
Genet Med ; 25(4): 100006, 2023 04.
Article in English | MEDLINE | ID: mdl-36621880

ABSTRACT

PURPOSE: Assessing the risk of common, complex diseases requires consideration of clinical risk factors as well as monogenic and polygenic risks, which in turn may be reflected in family history. Returning risks to individuals and providers may influence preventive care or use of prophylactic therapies for those individuals at high genetic risk. METHODS: To enable integrated genetic risk assessment, the eMERGE (electronic MEdical Records and GEnomics) network is enrolling 25,000 diverse individuals in a prospective cohort study across 10 sites. The network developed methods to return cross-ancestry polygenic risk scores, monogenic risks, family history, and clinical risk assessments via a genome-informed risk assessment (GIRA) report and will assess uptake of care recommendations after return of results. RESULTS: GIRAs include summary care recommendations for 11 conditions, education pages, and clinical laboratory reports. The return of high-risk GIRA to individuals and providers includes guidelines for care and lifestyle recommendations. Assembling the GIRA required infrastructure and workflows for ingesting and presenting content from multiple sources. Recruitment began in February 2022. CONCLUSION: Return of a novel report for communicating monogenic, polygenic, and family history-based risk factors will inform the benefits of integrated genetic risk assessment for routine health care.


Subject(s)
Genome , Genomics , Humans , Prospective Studies , Genomics/methods , Risk Factors , Risk Assessment
17.
Ann N Y Acad Sci ; 1521(1): 140-154, 2023 03.
Article in English | MEDLINE | ID: mdl-36718543

ABSTRACT

Uncovering the genetic underpinnings of musical ability and engagement is a foundational step for exploring their wide-ranging associations with cognition, health, and neurodevelopment. Prior studies have focused on using twin and family designs, demonstrating moderate heritability of musical phenotypes. The current study used genome-wide complex trait analysis and polygenic score (PGS) approaches utilizing genotype data to examine genetic influences on two musicality traits (rhythmic perception and music engagement) in N = 1792 unrelated adults in the Vanderbilt Online Musicality Study. Meta-analyzed heritability estimates (including a replication sample of Swedish individuals) were 31% for rhythmic perception and 12% for self-reported music engagement. A PGS derived from a recent study on beat synchronization ability predicted both rhythmic perception (ß = 0.11) and music engagement (ß = 0.19) in our sample, suggesting that genetic influences underlying self-reported beat synchronization ability also influence individuals' rhythmic discrimination aptitude and the degree to which they engage in music. Cross-trait analyses revealed a modest contribution of PGSs from several nonmusical traits (from the cognitive, personality, and circadian chronotype domains) to individual differences in musicality (ß = -0.06 to 0.07). This work sheds light on the complex relationship between the genetic architecture of musical rhythm processing, beat synchronization, music engagement, and other nonmusical traits.


Subject(s)
Music , Cognition , Individuality , Phenotype , Perception , Auditory Perception
19.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36413071

ABSTRACT

SUMMARY: Genomic data are often processed in batches and analyzed together to save time. However, it is challenging to combine multiple large VCFs and properly handle imputation quality and missing variants due to the limitations of available tools. To address these concerns, we developed IMMerge, a Python-based tool that takes advantage of multiprocessing to reduce running time. For the first time in a publicly available tool, imputation quality scores are correctly combined with Fisher's z transformation. AVAILABILITY AND IMPLEMENTATION: IMMerge is an open-source project under MIT license. Source code and user manual are available at https://github.com/belowlab/IMMerge.


Subject(s)
Genome , Genomics , Software
20.
JAMA Netw Open ; 5(12): e2248060, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36580336

ABSTRACT

Importance: Developmental language disorder (DLD) is a common (with up to 7% prevalence) yet underdiagnosed childhood disorder whose underlying biological profile and comorbidities are not fully understood, especially at the population level. Objective: To identify clinically relevant conditions that co-occur with DLD at the population level. Design, Setting, and Participants: This case-control study used an electronic health record (EHR)-based population-level approach to compare the prevalence of comorbid health phenotypes between DLD cases and matched controls. These cases were identified using the Automated Phenotyping Tool for Identifying Developmental Language Disorder algorithm of the Vanderbilt University Medical Center EHR, and a phenome enrichment analysis was used to identify comorbidities. An independent sample was selected from the Geisinger Health System EHR to test the replication of the phenome enrichment using the same phenotyping and analysis pipeline. Data from the Vanderbilt EHR were accessed between March 2019 and October 2020, while data from the Geisinger EHR were accessed between January and March 2022. Main Outcomes and Measures: Common and rare comorbidities of DLD at the population level were identified using EHRs and a phecode-based enrichment analysis. Results: Comorbidity analysis was conducted for 5273 DLD cases (mean [SD] age, 16.8 [7.2] years; 3748 males [71.1%]) and 26 353 matched controls (mean [SD] age, 14.6 [5.5] years; 18 729 males [71.1%]). Relevant phenotypes associated with DLD were found, including learning disorder, delayed milestones, disorders of the acoustic nerve, conduct disorders, attention-deficit/hyperactivity disorder, lack of coordination, and other motor deficits. Several other health phenotypes not previously associated with DLD were identified, such as dermatitis, conjunctivitis, and weight and nutrition, representing a new window into the clinical complexity of DLD. Conclusions and Relevance: This study found both rare and common comorbidities of DLD. Comorbidity profiles may be leveraged to identify risk of additional health challenges, beyond language impairment, among children with DLD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Language Development Disorders , Learning Disabilities , Male , Humans , Case-Control Studies , Attention Deficit Disorder with Hyperactivity/epidemiology , Comorbidity
SELECTION OF CITATIONS
SEARCH DETAIL
...