Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36363230

ABSTRACT

Porous carbon-carbon composite materials (PCCCM) were synthesized by the alkaline dehydrochlorination of polyvinyl chloride solutions in dimethyl sulfoxide containing the modifying additives of a nanostructured component (NC): graphite oxide (GO), reduced graphite oxide (RGO) or nanoglobular carbon (NGC), with subsequent two-step thermal treatment of the obtained polyvinylene-NC composites (carbonization at 400 °C and carbon dioxide activation at 900 °C). The focus of the study was on the analysis and digital processing of transmission electron microscopy images to study local areas of carbon composite materials, as well as to determine the distances between graphene layers. TEM and low-temperature nitrogen adsorption studies revealed that the structure of the synthesized PCCCM can be considered as a porous carbon matrix in which either carbon nanoglobules (in the case of NGC) or carbon particles with the "crumpled sheet" morphology (in the case of GO or RGO used as the modifying additives) are distributed. Depending on the features of the introduced 5-7 wt.% nanostructured component, the fraction of mesopores was shown to vary from 11% to 46%, and SBET-from 791 to 1115 m2 g-1. The synthesis of PCCNC using graphite oxide and reduced graphite oxide as the modifying additives can be considered as a method for synthesizing a porous carbon material with the hierarchical structure containing both the micro- and meso/macropores. Such materials are widely applied and can serve as adsorbents, catalyst supports, elements of power storage systems, etc.

2.
Magn Reson Chem ; 58(1): 84-96, 2020 01.
Article in English | MEDLINE | ID: mdl-31361050

ABSTRACT

Due to a detailed analysis of NMR spectra of the reaction solutions with different composition obtained by the aqueous-phase catalytic (Pd/C) hydrogenation of 2,4,6-trinitrobenzoic acid, the intermediate compounds were identified and a more substantiated mechanism was proposed for the formation of the main reaction products-1,3,5-triaminobenzene and cyclohexane-1,3,5-trione trioxime. The condensation of the 1,3,5-triaminobenzene molecules produced by a complete hydrogenation of 2,4,6-trinitrobenzoic acid was shown to result in the formation of a paramagnetic heterocyclic compound.

3.
Solid State Nucl Magn Reson ; 63-64: 37-41, 2014.
Article in English | MEDLINE | ID: mdl-25454293

ABSTRACT

The Pearson IV function was used to fit the asymmetric solid-state (27)Al NMR spectra of alumina based catalysts. A high convergence (correlation coefficient is no less than 0.997) between experimental and simulated spectra was achieved. The decomposition of the (27)Al NMR spectra of zinc/aluminum mixed oxides with different Zn/Al molar ratio revealed an increased fraction (6-9%) of pentacoordinated aluminum atoms in these oxides as compared to γ-Al2O3. As the Zn/Al ratio is raised, the fraction of [AlO6] octahedral units decreases, while the fraction of [AlO4] tetrahedra increases.

SELECTION OF CITATIONS
SEARCH DETAIL
...