Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 3483, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859457

ABSTRACT

This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. We also demonstrate the generality of our tracking method on C. elegans fluorescent nuclei imagery. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on GitHub and the method is available as a service through the BisQue portal.


Subject(s)
Algorithms , Caenorhabditis elegans , Animals , Time-Lapse Imaging , Cell Nucleus , Coloring Agents
2.
Plant Physiol ; 188(3): 1435-1449, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34908122

ABSTRACT

Mechanical properties, size and geometry of cells, and internal turgor pressure greatly influence cell morphogenesis. Computational models of cell growth require values for wall elastic modulus and turgor pressure, but very few experiments have been designed to validate the results using measurements that deform the entire thickness of the cell wall. New wall material is synthesized at the inner surface of the cell such that full-thickness deformations are needed to quantify relevant changes associated with cell development. Here, we present an integrated, experimental-computational approach to analyze quantitatively the variation of elastic bending behavior in the primary cell wall of living Arabidopsis (Arabidopsis thaliana) pavement cells and to measure turgor pressure within cells under different osmotic conditions. This approach used laser scanning confocal microscopy to measure the 3D geometry of single pavement cells and indentation experiments to probe the local mechanical responses across the periclinal wall. The experimental results were matched iteratively using a finite element model of the experiment to determine the local mechanical properties and turgor pressure. The resulting modulus distribution along the periclinal wall was nonuniform across the leaf cells studied. These results were consistent with the characteristics of plant cell walls which have a heterogeneous organization. The results and model allowed the magnitude and orientation of cell wall stress to be predicted quantitatively. The methods also serve as a reference for future work to analyze the morphogenetic behaviors of plant cells in terms of the heterogeneity and anisotropy of cell walls.


Subject(s)
Arabidopsis/growth & development , Cell Wall/physiology , Elasticity/physiology , Plant Development/physiology , Plant Leaves/growth & development , Stress, Mechanical
4.
Nat Plants ; 7(6): 826-841, 2021 06.
Article in English | MEDLINE | ID: mdl-34112988

ABSTRACT

The leaf epidermis is a dynamic biomechanical shell that integrates growth across spatial scales to influence organ morphology. Pavement cells, the fundamental unit of this tissue, morph irreversibly into highly lobed cells that drive planar leaf expansion. Here, we define how tissue-scale cell wall tensile forces and the microtubule-cellulose synthase systems dictate the patterns of interdigitated growth in real time. A morphologically potent subset of cortical microtubules span the periclinal and anticlinal cell faces to pattern cellulose fibres that generate a patch of anisotropic wall. The subsequent local polarized growth is mechanically coupled to the adjacent cell via a pectin-rich middle lamella, and this drives lobe formation. Finite element pavement cell models revealed cell wall tensile stress as an upstream patterning element that links cell- and tissue-scale biomechanical parameters to interdigitated growth. Cell lobing in leaves is evolutionarily conserved, occurs in multiple cell types and is associated with important agronomic traits. Our general mechanistic models of lobe formation provide a foundation to analyse the cellular basis of leaf morphology and function.


Subject(s)
Arabidopsis/cytology , Plant Cells , Plant Leaves/cytology , Plant Leaves/growth & development , Arabidopsis/growth & development , Biomechanical Phenomena , Cell Shape , Cell Wall/physiology , Cellulose/metabolism , Finite Element Analysis , Microscopy, Electron, Transmission , Microtubules/metabolism , Models, Biological , Mutation , Plant Cells/metabolism , Plants, Genetically Modified , Plasmodesmata
5.
Plant Physiol ; 181(4): 1535-1551, 2019 12.
Article in English | MEDLINE | ID: mdl-31601644

ABSTRACT

Complex cell shapes are generated first by breaking symmetry, and subsequent polar growth. Localized bending of anticlinal walls initiates lobe formation in the epidermal pavement cells of cotyledons and leaves, but how the microtubule cytoskeleton mediates local cell growth, and how plant pavement cells benefit from adopting jigsaw puzzle-like shapes, are poorly understood. In Arabidopsis (Arabidopsis thaliana), the basic Pro-rich protein (BPP) microtubule-associated protein family comprises seven members. We analyzed lobe morphogenesis in cotyledon pavement cells of a BPP1;BPP2;BPP5 triple knockout mutant. New image analysis methods (MtCurv and BQuant) showed that anticlinal microtubule bundles were significantly reduced and cortical microtubules that fan out radially across the periclinal wall did not enrich at the convex side of developing lobes. Despite these microtubule defects, new lobes were initiated at the same frequency as in wild-type cells, but they did not expand into well-defined protrusions. Eventually, mutant cells formed nearly polygonal shapes and adopted concentric microtubule patterns. The mutant periclinal cell wall bulged outward. The radius of the calculated inscribed circle of the pavement cells, a proposed proxy for maximal stress in the cell wall, was consistently larger in the mutant cells during cotyledon development, and correlated with an increase in cell height. These bpp mutant phenotypes provide genetic and cell biological evidence that initiation and growth of lobes are distinct morphogenetic processes, and that interdigitated cell geometry effectively suppresses large outward bulging of pavement cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/growth & development , Cell Shape , Microtubules/metabolism , Plant Cells/metabolism , Anisotropy , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cotyledon/metabolism , Models, Biological , Mutation/genetics , Plant Leaves/metabolism , Subcellular Fractions/metabolism
6.
Plant Physiol ; 176(1): 432-449, 2018 01.
Article in English | MEDLINE | ID: mdl-29192026

ABSTRACT

The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis (Arabidopsis thaliana) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Microtubules/metabolism , Morphogenesis , Plant Leaves/cytology , Plant Leaves/metabolism , Cell Membrane/metabolism , Cell Shape , Cell Wall/metabolism , Image Processing, Computer-Assisted , Mutation/genetics , Plant Epidermis/cytology , Protein Transport , Signal Transduction , Time Factors
7.
Plant Physiol ; 171(4): 2331-42, 2016 08.
Article in English | MEDLINE | ID: mdl-27288363

ABSTRACT

Dicot leaves are composed of a heterogeneous mosaic of jigsaw puzzle piece-shaped pavement cells that vary greatly in size and the complexity of their shape. Given the importance of the epidermis and this particular cell type for leaf expansion, there is a strong need to understand how pavement cells morph from a simple polyhedral shape into highly lobed and interdigitated cells. At present, it is still unclear how and when the patterns of lobing are initiated in pavement cells, and one major technological bottleneck to addressing the problem is the lack of a robust and objective methodology to identify and track lobing events during the transition from simple cell geometry to lobed cells. We developed a convex hull-based algorithm termed LobeFinder to identify lobes, quantify geometric properties, and create a useful graphical output of cell coordinates for further analysis. The algorithm was validated against manually curated images of pavement cells of widely varying sizes and shapes. The ability to objectively count and detect new lobe initiation events provides an improved quantitative framework to analyze mutant phenotypes, detect symmetry-breaking events in time-lapse image data, and quantify the time-dependent correlation between cell shape change and intracellular factors that may play a role in the morphogenesis process.


Subject(s)
Algorithms , Plant Cells/ultrastructure , Plants/ultrastructure , Cell Shape , Cotyledon/genetics , Cotyledon/ultrastructure , Mutation , Phenotype , Plant Development/genetics , Plant Leaves/genetics , Plant Leaves/ultrastructure , Plants/genetics
8.
BMC Bioinformatics ; 17: 88, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26887436

ABSTRACT

BACKGROUND: Robust methods for the segmentation and analysis of cells in 3D time sequences (3D+t) are critical for quantitative cell biology. While many automated methods for segmentation perform very well, few generalize reliably to diverse datasets. Such automated methods could significantly benefit from at least minimal user guidance. Identification and correction of segmentation errors in time-series data is of prime importance for proper validation of the subsequent analysis. The primary contribution of this work is a novel method for interactive segmentation and analysis of microscopy data, which learns from and guides user interactions to improve overall segmentation. RESULTS: We introduce an interactive cell analysis application, called CellECT, for 3D+t microscopy datasets. The core segmentation tool is watershed-based and allows the user to add, remove or modify existing segments by means of manipulating guidance markers. A confidence metric learns from the user interaction and highlights regions of uncertainty in the segmentation for the user's attention. User corrected segmentations are then propagated to neighboring time points. The analysis tool computes local and global statistics for various cell measurements over the time sequence. Detailed results on two large datasets containing membrane and nuclei data are presented: a 3D+t confocal microscopy dataset of the ascidian Phallusia mammillata consisting of 18 time points, and a 3D+t single plane illumination microscopy (SPIM) dataset consisting of 192 time points. Additionally, CellECT was used to segment a large population of jigsaw-puzzle shaped epidermal cells from Arabidopsis thaliana leaves. The cell coordinates obtained using CellECT are compared to those of manually segmented cells. CONCLUSIONS: CellECT provides tools for convenient segmentation and analysis of 3D+t membrane datasets by incorporating human interaction into automated algorithms. Users can modify segmentation results through the help of guidance markers, and an adaptive confidence metric highlights problematic regions. Segmentations can be propagated to multiple time points, and once a segmentation is available for a time sequence cells can be analyzed to observe trends. The segmentation and analysis tools presented here generalize well to membrane or cell wall volumetric time series datasets.


Subject(s)
Algorithms , Arabidopsis/growth & development , Biological Evolution , Imaging, Three-Dimensional/methods , Microscopy/methods , Plant Leaves/cytology , Urochordata/cytology , Animals , Cell Nucleus/metabolism , Computational Biology , Humans , Image Interpretation, Computer-Assisted/methods
9.
Nat Plants ; 1: 15014, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-27246881

ABSTRACT

The plant actin cytoskeleton is an unstable network of filaments that influences polarized growth through poorly understood mechanisms. Here, we used a combination of live cell imaging and finite element computational modelling of Arabidopsis trichome morphogenesis to determine how the actin and microtubule cytoskeletons cooperate to pattern the cell wall and growth. The actin-related protein (ARP)2/3 complex generates an actin meshwork that operates within a tip-localized, microtubule-depleted zone to modulate cell wall anisotropy locally. The actin meshwork also positions an actin bundle network that organizes organelle flow patterns. This activity is required to maintain cell wall thickness gradients that enable tip-biased diffuse growth. These newly discovered couplings between cytoskeletal patterns and wall textures provide important insights into the cellular mechanism of growth control in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...