Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Mol Med ; 16(1): 23-32, 2016.
Article in English | MEDLINE | ID: mdl-26695697

ABSTRACT

To sustain tumor growth, the cancer cells need to adapt to low levels of oxygen (i.e., hypoxia) in the tumor tissue and to the tumor-associated acidic microenvironment. In this phenomenon, the activation of the sodium/proton exchanger 1 (NHE1) at the plasma membrane and the hypoxia-inducible factor (HIF) are critical for the control of the intracellular pH (pHi) and for hypoxia adaptation, respectively. Interestingly, both of these mechanisms end in sustaining cancer cell proliferation. However, regulatory mechanisms of pHi in human ovary tissue and in malignant ascites are unknown. Additionally, a potential role of NHE1 in the modulation of H(+) efflux in human ovarian cancer cells is unknown. In this review, we discussed the characteristics of tumor microenvironment of primary human ovarian tumors and tumor ascites, in terms of pHi regulatory mechanisms and oxygen level. The findings described in the literature suggest that NHE1 may likely play a role in pHi regulation and cell proliferation in human ovarian cancer, potentially involving HIF2α activation. Since ovarian cancer is the fifth cause of prevalence of women cancer in Chile and is usually of late diagnosis, i.e., when the disease jeopardizes peritoneal cavity and other organs, resulting in reduced patient survival, new efforts are required to improve patient-life span and for a better understanding of the pathophysiology of the disease. The potential advantage of the use of amiloride and amiloride-derivatives for cancer treatment in terms of NHE1 expression and activity is also discussed as a therapeutic approach in human ovarian cancer.


Subject(s)
Ovarian Neoplasms/metabolism , Animals , Cell Proliferation/physiology , Female , Humans , Hydrogen-Ion Concentration , Oxygen/metabolism , Sodium-Hydrogen Exchangers/metabolism , Tumor Microenvironment/physiology
2.
Biol Sport ; 32(2): 123-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26060335

ABSTRACT

The purpose of this study was to compare the acute effects of general, specific and combined warm-up (WU) on explosive performance. Healthy male (n = 10) subjects participated in six WU protocols in a crossover randomized study design. Protocols were: passive rest (PR; 15 min of passive rest), running (Run; 5 min of running at 70% of maximum heart rate), stretching (STR; 5 min of static stretching exercise), jumping [Jump; 5 min of jumping exercises - 3x8 countermovement jumps (CMJ) and 3x8 drop jumps from 60 cm (DJ60)], and combined (COM; protocols Run+STR+Jump combined). Immediately before and after each WU, subjects were assessed for explosive concentric-only (i.e. squat jump - SJ), slow stretch-shortening cycle (i.e. CMJ), fast stretch-shortening cycle (i.e. DJ60) and contact time (CT) muscle performance. PR significantly reduced SJ performance (p =0.007). Run increased SJ (p =0.0001) and CMJ (p =0.002). STR increased CMJ (p =0.048). Specific WU (i.e. Jump) increased SJ (p =0.001), CMJ (p =0.028) and DJ60 (p =0.006) performance. COM increased CMJ performance (p =0.006). Jump was superior in SJ performance vs. PR (p =0.001). Jump reduced (p =0.03) CT in DJ60. In conclusion, general, specific and combined WU increase slow stretch-shortening cycle (SSC) muscle performance, but only specific WU increases fast SSC muscle performance. Therefore, to increase fast SSC performance, specific fast SSC muscle actions must be included during the WU.

SELECTION OF CITATIONS
SEARCH DETAIL
...