Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 224: 107030, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36649760

ABSTRACT

A high diversity of rattlesnake species can be found in the Baja California peninsula and the island of the Gulf of California, nevertheless, their venom has been poorly evaluated. The aim of this work was to present the first characterization of endemic Crotalus mitchellii, micro endemic C. polisi and C. thalassoporus venoms. All samples provoke human plasma coagulation showing doses in the rank of 2.3-41.0 µg and also produce rapid hydrolysis of the alpha chain of bovine fibrinogen while the beta chain is attacked at larger incubation periods by C. polisi and especially by C. thalassoporus. Phospholipase activity ranging from 23.2 to 173.8 U/mg. The venoms of C. thalassoporus and C. polisi show very high hemorrhagic activity (from 0.03 to 0.31 µg). A total of 130 toxin-related proteins were identified and classified into ten families. Crotalus mitchellii venom was characterized by high abundance of crotoxin-like and other phospholipase proteins (34.5%) and serine proteinases (29.8%). Crotalus polisi showed a similar proportion of metalloproteinases (34%) and serine proteinases (22.8%) components with important contribution of C-type lectins (14.3%) and CRiSP (14.0%) proteins. Venom of C. thalassoporus is dominated by metalloproteases that amount to more than 66% of total toxin proteins. These results provide a foundation for comprehending the biological, ecological and evolutionary significance of venom composition of speckled rattlesnake from the Baja California peninsula.


Subject(s)
Crotalid Venoms , Crotalus , Animals , Crotalid Venoms/metabolism , Crotalus/metabolism , Metalloproteases/metabolism , Mexico , Phospholipases/metabolism , Proteins/metabolism , Serine Proteases/metabolism
2.
Toxicon ; 193: 55-62, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33545227

ABSTRACT

Rattlesnake's venom constitutes an important ecological trait that dynamically changes over time. Venoms of adult and juvenile rattleless rattlesnakes, Crotalus catalinensis, an endemic insular species from the Gulf of California, were compared by electrophoretic profile, fibrinogenolytic activity, and proteomic composition to assess ontogenetic variability. The SDS-PAGE profiles show important differences at 12, 22, and 45 kDa, which were prominent in adult samples and absent in juvenile samples, while bands around 20, 25, and 70 kDa are almost absent in adults. Both venoms hydrolyze Aa and Bb chains of fibrinogen generating different patterns of degradation products. This activity was partially inhibited by EDTA and PMSF and completely abolished only in the presence of both inhibitors. More than 260 proteins were identified and quantified in both venoms by proteomic analysis. Metalloproteinases (more than 60%), serine proteinases (14.5% in adult venom and 17.7% in juvenile venom), and C-type lectins (7.1 and 5.9%) represent the three most abundant toxin-related protein families. Bradykinin inhibitor peptides and L-amino acid oxidases were not detected in juvenile venom. A protein-specific comparison shows that adult and juvenile venom share about 30.5% of total toxin-related proteins, while 32% and 35% are exclusively present in adult and juvenile venoms, respectively. This work represents one of the first efforts to understand phenotypic diversity in the venom composition of insular rattlesnake species from Mexico.


Subject(s)
Crotalid Venoms , Crotalus , Proteome/metabolism , Animals , Humans , Metalloproteases , Mexico , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...