Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Placenta ; 139: 99-111, 2023 08.
Article in English | MEDLINE | ID: mdl-37354692

ABSTRACT

INTRODUCTION: The mechanisms that govern fibroblast behavior during the vascular adaptations of the uterus at early pregnancy remain unknown. Anandamide, an endocannabinoid, binds to cannabinoid receptors (CBs), and regulates gestation and angiogenesis. Its tone is regulated by fatty acid amide hydrolase (FAAH) within the uterus. We investigated the role of anandamide in endometrial fibroblasts migration and whether anandamide modulates fibroblasts-endothelial crosstalk. METHODS: T-hESC and EA.hy926 cell lines were used as models of endometrial stromal and endothelial cells, respectively. T-hESC were incubated with anandamide plus different agents. Migration was tested (wound healing assay and phalloidin staining). Protein expression and localization were studied by Western blot and immunofluorescence. To test fibroblast-endothelial crosstalk, EA.hy926 cells were incubated with fibroblast conditioned media obtained after T-hESC migration. RESULTS: Anandamide 1 nM increased T-hESC migration via CB1 and CB2. Cyclooxygenase-2 participated in anandamide-stimulated fibroblast migration. Prostaglandin F2alpha, and not prostaglandin E2, increased fibroblast wound closure. CB1, CB2, cyclooxygenase-2 and FAAH were expressed in T-hESC. Anandamide did not alter cyclooxygenase-2 localization but induced its cytoplasmic and nuclear expression through CB1 and CB2. URB-597, a FAAH selective inhibitor, also increased T-hESC migration via both CBs, and augmented cyclooxygenase-2 expression. Conditioned media from anandamide-induced T-hESC wound healing closure stimulated endothelial migration and did not alter their proliferation. Soluble factors from cyclooxygenase-2 were secreted by T-hESC and participated in T-hESC-induced EA.hy926 migration. Although anandamide-conditioned media augmented in EA.hy926 the expression of γH2AX, a marker of DNA damage, cyclooxygenase-2 was not involved in this effect. DISCUSSION: Our results provide novel evidence about an active role of anandamide on endometrial fibroblast behavior as a mechanism regulating uterine vascular adaptations in early gestation.


Subject(s)
Endocannabinoids , Endothelial Cells , Pregnancy , Female , Humans , Endocannabinoids/pharmacology , Endothelial Cells/metabolism , Culture Media, Conditioned , Prostaglandin-Endoperoxide Synthases , Fibroblasts/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism
2.
Reproduction ; 163(2): 85-94, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34990399

ABSTRACT

Implantation-related events are crucial for pregnancy success. In particular, defects in vascular remodeling at the maternal-fetal interface are associated with spontaneous miscarriage and recurrent pregnancy loss. Physical activity and therapies oriented to reduce stress improve pregnancy outcomes. In animal models, environmental stimulation and enrichment are associated with enhanced well-being, cognitive function and stress resilience. Here, we studied whether the exposure of BALB/c mice to an enriched environment (EE) regulates crucial events during early gestation at the maternal-fetal interface. Pregnant BALB/c mice were exposed to the EE that combines non-invasive stimuli from the sensory pathway with voluntary physical activity. The pregnancy rate was evaluated. Implantation sites were investigated microscopically and macroscopically. Vascular adaptation parameters at the maternal-fetal interface were analyzed. We found that exposure to the EE prevented pregnancy loss between gestational days 7 and 15. Also, it increased the diameter of the uterine artery and decreased the wall:lumen ratio of the mesometrial decidual vessels, suggesting that EE exposure promotes vascular remodeling. Moreover, it increased nitric oxide synthase activity and inducible nitric oxide synthase expression, as well as prostaglandin F2a production and endoglin expression in the implantation sites. Exposure of pregnant females to the EE regulates uterine physiology, promoting vascular remodeling during early gestation. These adaptations might contribute to preventing embryo loss. Our results highlight the importance of the maternal environment for pregnancy success. The design of an 'EE-like' protocol for humans could be considered as a new non-pharmacologic strategy to prevent implantation failure and recurrent miscarriage.


Subject(s)
Embryo Loss , Vascular Remodeling , Animals , Decidua/metabolism , Female , Humans , Maternal Exposure , Mice , Mice, Inbred BALB C , Pregnancy , Uterus/metabolism
3.
Reproduction ; 160(5): 737-750, 2020 11.
Article in English | MEDLINE | ID: mdl-33065549

ABSTRACT

We previously reported that binding to heparan sulfate (HS) is required for the ability of the placentally secreted pregnancy-specific glycoprotein 1 (PSG1) to induce endothelial tubulogenesis. PSG1 is composed of four immunoglobulin-like domains but which domains of the protein bind to HS remains unknown. To analyze the interaction of PSG1 with HS, we generated several recombinant proteins, including the individual domains, chimeric proteins between two PSG1 domains, and mutants. Using flow cytometric and surface plasmon resonance studies, we determined that the B2 domain of PSG1 binds to HS and that the positively charged amino acids encompassed between amino acids 43-59 are required for this interaction. Furthermore, we showed that the B2 domain of PSG1 is required for the increase in the formation of tubes by endothelial cells (EC) including a human endometrial EC line and two extravillous trophoblast (EVT) cell lines and for the pro-angiogenic activity of PSG1 observed in an aortic ring assay. PSG1 enhanced the migration of ECs while it increased the expression of matrix metalloproteinase-2 in EVTs, indicating that the pro-angiogenic effect of PSG1 on these two cell types may be mediated by different mechanisms. Despite differences in amino acid sequence, we observed that all human PSGs bound to HS proteoglycans and confirmed that at least two other members of the family, PSG6 and PSG9, induce tube formation. These findings contribute to a better understanding of the pro-angiogenic activity of human PSGs and strongly suggest conservation of this function among all PSG family members.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Endothelial Cells/metabolism , Glycoproteins/metabolism , Neovascularization, Physiologic , Placenta/metabolism , Pregnancy Proteins/metabolism , Trophoblasts/metabolism , Endothelial Cells/cytology , Female , Glycoproteins/genetics , Humans , Placenta/cytology , Pregnancy , Pregnancy Proteins/genetics , Pregnancy-Specific beta 1-Glycoproteins/metabolism , Trophoblasts/cytology
4.
J Cell Physiol ; 235(11): 8260-8269, 2020 11.
Article in English | MEDLINE | ID: mdl-31970793

ABSTRACT

Maternal obesity has been shown to impact the offspring health during childhood and adult life. This study aimed to evaluate whether maternal obesity combined with postnatal exposure to an obesogenic diet could induce metabolic alterations in offspring. Female CD1 mice were fed a control diet (CD, 11.1% of energy from fat) or with a high-fat diet (HFD, 44.3% of energy from fat) for 3 months. After weaning, pups born from control and obese mothers were fed with CD or HFD for 3 months. Both mothers and offspring were weighted weekly and several blood metabolic parameters levels were evaluated. Here, we present evidence that the offspring from mothers exposed to a HFD showed increased acetylation levels of histone 3 on lysine 9 (H3K9) in the liver at postnatal Day 1, whereas the levels of acetylation of H4K16, dimethylation of H3K27, and trimethylation of H3K9 showed no change. We also observed a higher perinatal weight and increased blood cholesterol levels when compared to the offspring on postnatal Day 1 born from CD-fed mothers. When mice born from obese mothers were fed with HFD, we observed that they gained more weight, presented higher blood cholesterol levels, and abdominal adipose tissue than mice born to the same mothers but fed with CD. Collectively, our results point toward maternal obesity and HFD consumption as a risk factor for epigenetic changes in the liver of the offspring, higher perinatal weight, increased weight gain, and altered blood cholesterol levels.


Subject(s)
Cholesterol/blood , Diet, High-Fat/adverse effects , Obesity/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Nutritional Physiological Phenomena , Animals , DNA Methylation , Female , Histones/metabolism , Liver/metabolism , Mice , Pregnancy
5.
Reproduction ; 159(2): R55-R67, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31426027

ABSTRACT

Lysophosphatidic acid (LPA) belongs to the group of phosphorylated lipids reported as crucial mediators in the physiology of reproduction. LPA binds to G-protein-coupled receptors and regulates a wide range of female reproductive functions. This bioactive lipid has also been implicated in vascular functions during physiological and pathological conditions. In this regard, the establishment of a successful pregnancy requires proper coordination of vascular processes and remodeling of maternal blood vessels during early gestation. During this process, first trimester cytotrophoblast changes from an invasive to an endovascular phenotype and transforms uterine spiral arteries which are the nutrient supply for placenta and fetus. Here we present an overview of LPA participation in vascular remodeling and highlight the importance of LPA-LPA3 signaling during early gestation at the maternal-fetal interface.

6.
J Cell Physiol ; 234(5): 6274-6285, 2019 05.
Article in English | MEDLINE | ID: mdl-30362520

ABSTRACT

Spiral artery remodeling at the maternal-fetal interface is crucial for successful pregnancy and requires the interaction between the first trimester trophoblast and the endothelial cells of the maternal vessels. However, the precise mechanism of this dialog has yet to be determined. The current study investigated whether lysophosphatidic acid (LPA) modulates trophoblast-endothelial crosstalk in vitro. HTR-8/SVneo trophoblast cell line (H8) was seeded on top of Geltrex, incubated with LPA or LPA + NS-398 (selective cyclooxygenase-2 inhibitor), LPA + 1400W (selective inducible nitric oxide synthase inhibitor) or LPA + IL-6 neutralizing antibody and assayed for tube formation to model the acquisition of trophoblast endovascular phenotype. The supernatants were collected and used as conditioned media (CM). To test trophoblast-endothelial crosstalk, the endothelial cell line EA.hy926 was incubated with trophoblast CM. The CM from LPA-induced tubulogenesis stimulated endothelial cells migration and did not modify the apoptosis. Soluble factors derived from cyclooxygenase-2 and IL-6 pathways were involved in H8-EA.hy926 interaction under the LPA effect. Moreover, LPA increased the levels of IL-6 mRNA by cyclooxygenase-2 pathway in H8 cells. Collectively, LPA promotes trophoblast-endothelial crosstalk in vitro and induces the release of trophoblast soluble factors that stimulate endothelial cells migration without changes in apoptosis. The evidence presented here provides new insights about an active role of LPA as a lipid mediator regulating vascular remodeling at the maternal-fetal interface.


Subject(s)
Endothelial Cells/drug effects , Lysophospholipids/pharmacology , Placentation/drug effects , Placentation/physiology , Trophoblasts/drug effects , Cell Line , Female , Humans , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Pregnancy , Receptor Cross-Talk/drug effects , Receptor Cross-Talk/physiology , Trophoblasts/metabolism
7.
Mol Cell Endocrinol ; 478: 126-132, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30099013

ABSTRACT

Successful implantation and placentation requires that extravillous cytotrophoblast acquires an endovascular phenotype and remodels uterine spiral arteries. Progesterone (P4) and estradiol (E2) control many of the placental functions, but their role in vascular remodeling remains controversial. Here, we investigated whether P4 and E2 regulate the acquisition of the human first trimester trophoblast endovascular phenotype, and the participation of the lysophosphatidic acid pathway. For this purpose, human first trimester HTR-8/SVneo cells were seeded on Geltrex and assayed for capillary-like tube formation. P4 and E2 increased HTR-8/SVneo tube formation in a concentration-dependent manner and this effect is mediated by the LPA3 receptor. Moreover, sex steroids increased the mRNA levels of the main enzyme that produce lysophosphatidic acid (lysophospholipase-D) but did not regulate LPA3 mRNA levels. Overall, we demonstrate that steroid hormones regulate HTR-8/SVneo trophoblast capillary-like structures formation and we propose that this process could be modulated directly or indirectly by mechanisms associated to the LPA/LPA3 pathway.


Subject(s)
Lysophospholipids/metabolism , Pregnancy Trimester, First/metabolism , Steroids/pharmacology , Trophoblasts/cytology , Trophoblasts/metabolism , Cell Line , Estradiol/pharmacology , Female , Humans , Neovascularization, Physiologic/drug effects , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Pregnancy , Progesterone/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trophoblasts/drug effects
8.
J Cell Biochem ; 119(1): 758-772, 2018 01.
Article in English | MEDLINE | ID: mdl-28657680

ABSTRACT

Successful implantation and placentation requires that extravillous cytotrophoblast acquires an endovascular phenotype and remodels uterine spiral arteries. Defects in this mechanism correlate with severe obstetric complications as implantation failure and preeclampsia. Lysophosphatidic acid (LPA) participates in embryo implantation and contributes to vascular physiology in different biological systems. However, the role of LPA on trophoblast endovascular transformation has not been studied. Due to difficulties in studying human pregnancy in vivo, we adopted a pharmacological approach in vitro to investigate LPA action in various aspects of trophoblast endovascular response, such as the formation of endothelial capillary-like structures, migration, and proliferation. The HTR-8/SVneo cell line established from human first trimester cytotrophoblast was used to model the acquisition of the endovascular phenotype by the invading trophoblast. LPA increased HTR-8/SVneo tube formation, migration (wound healing assay and phalloidin staining) and proliferation (MTT assay). LPA G protein-coupled receptors, LPA1 and LPA3 , were expressed in HTR-8/SVneo. By using selective antagonists, we showed that enhanced tubulogenesis was mediated by LPA3 . In addition, cyclooxygenase-2 and inducible nitric oxide synthase pathways participated in LPA-stimulated tubulogenesis. Inducible nitric oxide synthase was activated downstream cyclooxygenase-2. Furthermore, prostaglandin E2 and a nitric oxide donor (SNAP) increased trophoblast tube formation in a concentration-dependent manner. Finally, we observed that cyclooxygenase-2 and inducible nitric oxide synthase were localized in the nucleus, and LPA did not modify their cellular distribution. Our results show that LPA-triggered regulatory pathways promote trophoblast endovascular response in vitro, suggesting a new role for LPA during spiral artery remodeling at the maternal-fetal interface.


Subject(s)
Lysophospholipids/pharmacology , Placentation/drug effects , Signal Transduction/drug effects , Trophoblasts/cytology , Cell Line , Cell Nucleus/metabolism , Cyclooxygenase 2/metabolism , Female , Humans , In Vitro Techniques , Phenotype , Pregnancy , Trophoblasts/metabolism
9.
Reprod Fertil Dev ; 29(11): 2112-2126, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28376314

ABSTRACT

Lysophosphatidic acid (LPA) affects several female reproductive functions through G-protein-coupled receptors. LPA contributes to embryo implantation via the lysophospholipid LPA3 receptor. In the present study we investigated the participation of endogenous LPA signalling through the LPA3 receptor in vascularisation and decidualisation, two crucial events at the maternal-fetal interface. Pregnant rats were treated with diacylglycerol pyrophosphate (DGPP), a highly selective antagonist of LPA3 receptors, on Day 5 of gestation. Pregnant rats received intrauterine (i.u.) injections of single doses of DGPP (0.1mgkg-1) in a total volume of 2µL in the left horn (treated horn) in the morning of GD5. DGPP treatment produced aberrant embryo spacing and increased embryo resorption. The LPA3 receptor antagonist decreased the cross-sectional length of the uterine and arcuate arteries and induced histological anomalies in the decidua and placentas. Marked haemorrhagic processes, infiltration of immune cells and tissue disorganisation were observed in decidual and placental tissues from sites of resorption. The mRNA expression of three vascularisation markers, namely interleukin 10 (Il10), vascular endothelial growth factor (Vegfa) and vascular endothelial growth factor receptor 1 (Vegfr1), was reduced at sites of resorption from Day 8. The results show that the disruption of endogenous LPA signalling by blocking the LPA3 receptor modified the development of uterine vessels with consequences in the formation of the decidua and placenta and in the growth of embryos.


Subject(s)
Decidua/metabolism , Lysophospholipids/metabolism , Neovascularization, Physiologic/physiology , Placenta/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction/physiology , Animals , Decidua/drug effects , Diphosphates/pharmacology , Embryo Implantation/physiology , Female , Glycerol/analogs & derivatives , Glycerol/pharmacology , Interleukin-10/metabolism , Neovascularization, Physiologic/drug effects , Placenta/blood supply , Placenta/drug effects , Pregnancy , Rats , Receptors, Lysophosphatidic Acid/agonists , Signal Transduction/drug effects , Uterine Artery/drug effects , Uterine Artery/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
10.
J Cell Biochem ; 118(11): 4095-4108, 2017 11.
Article in English | MEDLINE | ID: mdl-28419524

ABSTRACT

During the passage of sperm through the oviduct, spermatozoa bind to the oviductal epithelium and form the oviductal reservoir. This interaction keeps the fertilizing capacity of sperm until ovulation-associated signals induce sperm release from the oviductal epithelium, allowing the transit of spermatozoa to the fertilization site. Fibronectin is a glycoprotein from the extracellular matrix that binds to α5ß1 receptors. Fibronectin has been found to be expressed in the oviduct, whereas α5ß1 has been found to be expressed in the sperm of different species. Fibronectin is involved through α5ß1 in sperm functions. The aim of this work was to study the participation of oviductal fibronectin in the regulation of the sperm-oviduct interaction in cattle. We found that oviductal epithelial cells differentially expressed all mRNA splice variants of fibronectin during the estrous cycle. Fibronectin was localized in the apical region of oviductal epithelial cells and fibronectin levels in the oviductal fluid fluctuated during the estrous cycle. Also, bovine spermatozoa expressed α5ß1. Using in vitro sperm-oviduct co-cultures, we found that spermatozoa were attached to the oviductal epithelium through α5ß1. The incubation of co-cultures with fibronectin induced sperm release from the oviductal cells through α5ß1. The sperm population released from oviductal cells by fibronectin was enriched in motile and capacitated spermatozoa. Based on our in vitro culture system results, we propose that fibronectin and α5ß1 are involved in the sperm-oviduct interaction. Also, an increase in fibronectin levels in the oviductal fluid during the pre-ovulatory period may promote sperm release from the oviductal epithelium in cattle. J. Cell. Biochem. 118: 4095-4108, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Cell Communication/physiology , Epithelial Cells/metabolism , Estrous Cycle/physiology , Fibronectins/metabolism , Oviducts/metabolism , Spermatozoa/metabolism , Animals , Cattle , Epithelial Cells/cytology , Female , Male , Oviducts/cytology , Spermatozoa/cytology
11.
PLoS One ; 7(9): e46059, 2012.
Article in English | MEDLINE | ID: mdl-23029388

ABSTRACT

Bioactive lipid molecules as lysophosphatidic acid (LPA), prostaglandins (PG) and endocannabinoids are important mediators of embryo implantation. Based on previous published data we became interested in studying the interaction between these three groups of lipid derivatives in the rat uterus during the window of implantation. Thus, we adopted a pharmacological approach in vitro using LPA, DGPP (a selective antagonist of LPA3, an LPA receptor), endocannabinoids' receptor selective antagonists (AM251 and AM630) and non selective (indomethacin) and selective (NS-398) inhibitors of cyclooxygenase-1 and 2 enzymes. Cyclooxygenase isoforms participate in prostaglandins' synthesis. The incubation of the uterus from rats pregnant on day 5 of gestation (implantation window) with LPA augmented the activity and the expression of fatty acid amide hydrolase, the main enzyme involved in the degradation of endocannabinoids in the rodent uteri, suggesting that LPA decreased endocannabinoids' levels during embryo implantation. It has been reported that high endocannabinoids are deleterious for implantation. Also, LPA increased PGE2 production and cyclooxygenase-2 expression. The incubation of LPA with indomethacin or NS-398 reversed the increment in PGE2 production, suggesting that cyclooxygenase-2 was the isoform involved in LPA effect. PGs are important mediators of decidualization and vascularization at the implantation sites. All these effects were mediated by LPA3, as the incubation with DGPP completely reversed LPA stimulatory actions. Besides, we also observed that endocannabinoids mediated the stimulatory effect of LPA on cyclooxygenase-2 derived PGE2 production, as the incubation of LPA with AM251 or AM630 completely reversed LPA effect. Also, LPA augmented via LPA3 decidualization and vascularization markers. Overall, the results presented here demonstrate the participation of LPA3 in the process of implantation through the interaction with other groups of lipid molecules, prostaglandins and endocannabinoids, which prepare the uterine milieu for embryo invasion during the window of implantation.


Subject(s)
Embryo Implantation , Endocannabinoids/metabolism , Lysophospholipids/metabolism , Prostaglandins/metabolism , Amidohydrolases/metabolism , Animals , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Female , Phosphoric Diester Hydrolases/analysis , Phosphoric Diester Hydrolases/metabolism , Pregnancy , Rats , Rats, Wistar , Receptors, Lysophosphatidic Acid/analysis , Receptors, Lysophosphatidic Acid/metabolism , Uterus/blood supply , Uterus/metabolism
12.
Eur J Pharmacol ; 685(1-3): 174-9, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22554772

ABSTRACT

Anandamide, an endocannabinoid, prostaglandins derived from cyclooxygenase-2 and nitric oxide synthesized by nitric oxide synthase (NOS), are relevant mediators of embryo implantation. We adopted a pharmacological approach to investigate if anandamide modulated NOS activity in the receptive rat uterus and if prostaglandins mediated this effect. As we were interested in studying the changes that occur at the maternal side of the fetal-maternal interface, we worked with uteri obtained from pseudopregnant rats. Females were sacrificed on day 5 of pseudopregnancy, the day in which implantation would occur, and the uterus was obtained. Anandamide (2 ng/kg, i.p.) inhibited NOS activity (P<0.001) and increased the levels of prostaglandin E(2) (P<0.001) and prostaglandin F(2α) (P<0.01). These effects were mediated via cannabinoid receptor type 2, as the pre-treatment with SR144528 (10 mg/kg, i.p.), a selective cannabinoid receptor type 2 antagonist, completely reverted anandamide effect on NOS activity and prostaglandin levels. The pre-treatment with a non-selective cyclooxygenase inhibitor (indomethacin 2.5mg/kg, i.p.) or with selective cyclooxygenase-2 inhibitors (meloxicam 4 mg/kg, celecoxib 3mg/kg, i.p.) reverted anandamide inhibition on NOS, suggesting that prostaglandins are derived from cyclooxygenase-2 mediated anandamide effect. Thus, anandamide levels seemed to modulate NOS activity, fundamental for implantation, via cannabinoid receptor type 2 receptors, in the receptive uterus. This modulation depends on the production of cyclooxygenase-2 derivatives. These data establish cannabinoid receptors and cyclooxygenase enzymes as an interesting target for the treatment of implantation deficiencies.


Subject(s)
Arachidonic Acids/pharmacology , Dinoprost/metabolism , Dinoprostone/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Polyunsaturated Alkamides/pharmacology , Animals , Camphanes/pharmacology , Cannabinoid Receptor Modulators/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Endocannabinoids , Female , Nitric Oxide Synthase/metabolism , Pseudopregnancy , Pyrazoles/pharmacology , Rats , Rats, Wistar , Receptor, Cannabinoid, CB2/drug effects , Receptor, Cannabinoid, CB2/metabolism , Uterus/drug effects , Uterus/metabolism
13.
PLoS One ; 6(4): e18368, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21559512

ABSTRACT

Nitric oxide production, catalyzed by nitric oxide synthase (NOS), should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot(-1) h(-1)) compared to days 4 (0.34±0.03) and 5 (0.35±0.02) of pregnancy and to day 6 implantation sites (0.33±0.01). This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA), an endocannabinoid, binds to cannabinoid receptors type 1 (CB1) and type 2 (CB2), and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA) and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04) and URB-597 (1.08±0.09 vs 0.83±0.06) inhibited NOS activity in the absence of a blastocyst (pseudopregnancy) through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05). While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02), a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01). Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These data establish cannabinoid receptors as an interesting target for the treatment of implantation deficiencies.


Subject(s)
Arachidonic Acids/pharmacology , Blastocyst/cytology , Blastocyst/physiology , Nitric Oxide Synthase/metabolism , Polyunsaturated Alkamides/pharmacology , Uterus/drug effects , Uterus/enzymology , Animals , Benzamides/pharmacology , Cannabinoid Receptor Modulators/pharmacology , Carbamates/pharmacology , Embryo Implantation , Endocannabinoids , Female , Immunohistochemistry/methods , Polymerase Chain Reaction , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...