Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 64: 74-79, 2019 02.
Article in English | MEDLINE | ID: mdl-30554980

ABSTRACT

In this manuscript we describe the development and testing of a bipolar electrode for the simultaneous acquisition of ultrasound (US) images and surface electromyograms (EMGs) from the same muscle region. The developed electrode (bEMG-US) consists of two circular sensing regions (20 mm diameter) with fixed inter-electrode distance (3.5 cm, center-to-center). Both the sensing regions and the external structure of the electrode are made of hydrogel layers separated by insulating materials. The electrical properties (i.e., impedance and noise of the electrode-skin interface) and the quality of EMGs detected with the developed electrodes during electrically elicited contractions were assessed and compared with those provided by commercially available EMG electrodes. The effect of the bEMG-US electrode on US images was evaluated by comparing images detected from the same muscle region with and without the electrode interposed between the US probe and the skin. Tests on five subjects showed that the electrode-skin impedance of bEMG-US electrodes was higher than that of conventional EMG electrodes (mean (range): 15.6 (8.5-21.1) kΩ vs. 8.2 (4.9-16.5) kΩ). Despite higher impedance values, both electrode systems provided comparable, electrode-skin noise levels (1.4 (1.1-1.7) µV vs. 1.3 (1.0-1.5) µV) and M waves (normalized mean square error: 2.6 (0.6-6.8)%). The quality of US images detected with and without the bEMG-US electrode between the US probe and the skin was comparable, as demonstrated by the low errors in the estimation of anatomical variables in the two experimental conditions (range: (0.37-2.35) deg for pennation angle and (-0.31-0.1) cm for muscle thickness). Results demonstrate that bEMG-US can be used to acquire concurrently EMGs and US images from the same muscle region with a negligible effect on the quality of the two detected signals, thus allowing for a simultaneous, multimodal evaluation of muscle activation.


Subject(s)
Acoustics , Electromyography/instrumentation , Hydrogels , Image Processing, Computer-Assisted , Signal Processing, Computer-Assisted , Ultrasonography/instrumentation , Adult , Electric Impedance , Electrodes , Humans , Male , Signal-To-Noise Ratio , Time Factors , Young Adult
2.
Mar Environ Res ; 93: 93-101, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23916371

ABSTRACT

The aim of this study was a preliminary investigation on the possibility of using the ephyra of Scyphozoan jellyfish Aurelia aurita (Linnaeus, 1758), the common moon jellyfish, as an innovative model organism in marine ecotoxicology. A series of sequential experiments have been carried out in laboratory in order to investigate the influence of different culturing and methodological parameters (temperature, photoperiod, ephyrae density and age) on behavioural end-points (% of Frequency of Pulsations) and standardize a testing protocol. After that, the organisms have been exposed to two well known reference toxic compounds (Cadmium Nitrate and SDS) in order to analyse the acute and behavioural responses during static exposure. Results of this work indicate that the proposed behavioural end-point, frequency of pulsations (Fp), is an easily measurable one and can be used coupled with an acute one (immobilization) and that ephyrae of jellyfish are very promising model organisms for ecotoxicological investigation.


Subject(s)
Cadmium Compounds/toxicity , Ecotoxicology/methods , Models, Animal , Nitrates/toxicity , Scyphozoa/drug effects , Sodium Dodecyl Sulfate/toxicity , Animals , Biological Assay , Photoperiod , Scyphozoa/physiology , Swimming , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...