Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 24(22): e202300405, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37622518

ABSTRACT

Dichroism and birefringence in Stimulated Raman Scattering (SRS) in polyatomic molecules were studied theoretically. General expressions describing the change of the polarization matrix of the probe laser beam transmitted through initially isotropic molecular sample excited by the pump laser beam have been derived. Arbitrary polarization states and propagation directions of the incoming pump and probe beams were considered. The expressions were written in terms of spherical tensor operators that allowed for separation of the field polarization tensor and the molecular part containing three scalar values of nonlinear optical susceptibility χ K p u 3 ${{\chi }_{{K}_{pu}}^{\left(3\right)}}$ with K p u ${{K}_{pu}}$ =0,1,2. The geometry of almost collinear propagation of the pump and probe beams through the molecular sample was considered in greater details. It was shown that the dichroism and birefringence refer to the nonlinear optical susceptibility element χ 2 3 ${{\chi }_{2}^{\left(3\right)}}$ and that their contributions to the SRS signal can be separated experimentally by using an appropriate probe beam polarization analyzer installed in front of the photodetector. Particular cases of the off-resonant SRS and resonant SRS have been considered. The results obtained were expressed in terms of the Stokes polarization parameters of the pump and probe beams.

2.
Polymers (Basel) ; 14(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36559830

ABSTRACT

We report measurements of linear and nonlinear elastic properties of polystyrene-based nanocomposites with six types of nanofillers, including single and binary mixtures of allotropic carbon nanoparticles. Composite samples were fabricated by the same technology and contained the same filler concentration (5% wt.), which allowed for a direct comparison of their properties. It was shown that the most significant variations of linear and nonlinear elastic properties occur in different nanocomposites. In particular, the most pronounced enhancements of linear elastic moduli (in about 50%) obtained in tensile and flexural tests and in dynamic mechanical analysis were recorded in the sample filled with spherical fullerene nanoparticles. While the most profound rise of absolute values of nonlinear elastic moduli (tens of times) was obtained in the sample filled with the mixture of carbon nanotubes and graphene. The observed tendencies demonstrated the synergistic effect of fillers of different dimensionality on the elastic properties of nanocomposites.

3.
Phys Rev E ; 105(1): L012501, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193276

ABSTRACT

We investigate the local elastic properties of polystyrene doped with SiO_{2} nanoparticles by analyzing the local density fluctuations. The density fluctuations were established from coarse-grained molecular dynamics simulations performed with the MARTINI force field. A significant increase in polystyrene stiffness was revealed within a characteristic range of 1.4 nm from the nanoparticle, while polystyrene density saturates to the bulk value at significantly shorter distances. The enhancement of the local elastic properties of the polymer was attributed to the effect of nonaffine deformations at the length scale below 1 nm, which was further confirmed through the random matrix model with variable strength of disorder.

4.
J Phys Chem B ; 125(34): 9692-9707, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34410128

ABSTRACT

The dynamics of polarized fluorescence in NADH in alcohol dehydrogenase (ADH) in buffer solution has been studied using the TCSPC spectroscopy. A global fit procedure was used for determination of the fluorescence parameters from experiment. The interpretation of the results obtained was supported by ab initio calculations of the NADH structure. A theoretical model was developed describing the polarized fluorescence decay in ADH-NADH complexes that considered several interaction scenarios. A comparative analysis of the polarization-insensitive fluorescence decay using multiexponential fitting models has been carried out. As shown, the origin of a significant enhancement of the decay time in the ADH-NADH complex can be attributed to the decrease of nonradiative relaxation rates in the nicotinamide ring in the conditions of the apolar binding site environment. The existence of a single decay time in the ADH-NADH complex in comparison with two decay times observed in free NADH was attributed to a single NADH unfolded conformation in the ADH binding site. Comparison of the experimental data with the theoretical model suggested the existence of an anisotropic relaxation time of about 1 ns that is related with the rotation of fluorescence transition dipole moment due to the rearrangement of the excited state NADH nuclear configuration.


Subject(s)
Alcohol Dehydrogenase , NAD , Alcohol Dehydrogenase/metabolism , Anisotropy , Binding Sites , NAD/metabolism , Spectrometry, Fluorescence
5.
Polymers (Basel) ; 12(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114164

ABSTRACT

The paper presents a comprehensive analysis of the elastic properties of polystyrene-based nanocomposites filled with different types of inclusions: small spherical particles (SiO2 and Al2O3), alumosilicates (montmorillonite, halloysite natural tubules and mica), and carbon nanofillers (carbon black and multi-walled carbon nanotubes). Block samples of composites with different filler concentrations were fabricated by melt technology, and their linear and non-linear elastic properties were studied. The introduction of more rigid particles led to a more profound increase in the elastic modulus of a composite, with the highest rise of about 80% obtained with carbon fillers. Non-linear elastic moduli of composites were shown to be more sensitive to addition of filler particles to the polymer matrix than linear ones. A non-linearity modulus ßs comprising the combination of linear and non-linear elastic moduli of a material demonstrated considerable changes correlating with those of the Young's modulus. The changes in non-linear elasticity of fabricated composites were compared with parameters of bulk non-linear strain waves propagating in them. Variations of wave velocity and decay decrement correlated with the observed enhancement of materials' non-linearity.

6.
Phys Chem Chem Phys ; 22(32): 18155-18168, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32766648

ABSTRACT

We present the results of experimental and theoretical studies of fast anisotropic relaxation and rotational diffusion in the first electron excited state of biological coenzyme NADH in water-ethanol solutions. The experiments have been carried out by means of a novel polarization-modulation transient method and fluorescence polarization spectroscopy. For interpretation of the experimental results a model of the anisotropic relaxation in terms of scalar and vector properties of transition dipole moments has been developed based on the Born-Oppenheimer approximation. This model allows for the description of fast isotropic and anisotropic excited state relaxation under excitation of molecules by ultrafast laser pulses in transient absorption and upconversion experiments. The results obtained suggest that the dynamics of anisotropic rovibronic relaxation in NADH under excitation with 100 fs pump laser pulses can be characterised by a single vibrational relaxation time τv lying in the range of 2-15 ps and a single rotation diffusion time τr lying in the range of 100-450 ps, both depending on ethanol concentration. The dependence of the times τv and τr on the solution polarity (static permittivity) and viscosity has been determined and analyzed. Limiting values of the term P2(cos θ) describing the rotation of the transition dipole moment in the course of vibrational relaxation have been determined from experiments as a function of ethanol concentration and analyzed.


Subject(s)
NAD/chemistry , Spectrometry, Fluorescence , Anisotropy , Ethanol/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...