Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pilot Feasibility Stud ; 9(1): 100, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328890

ABSTRACT

BACKGROUND: Multiple vaccines have been approved since August 2021 to prevent infection with SARS-CoV-2; however, 20-40% of immunocompromised people fail to develop SARS-CoV-2 spike antibodies after COVID-19 vaccination and remain at high risk of infection and more severe illness than non-immunocompromised hosts. Sotrovimab (VIR-7831) is a monoclonal neutralizing antibody that binds a conserved epitope on the SARS-CoV-2 spike protein. It is neither renally excreted nor metabolized by P450 enzymes and therefore unlikely to interact with concomitant medications (e.g., immunosuppressive medications). In this open-label feasibility study protocol, we will define the optimal dose and dosing interval of sotrovimab as pre-exposure prophylaxis for immunocompromised individuals as well as its safety and tolerability in this population specifically. METHODS: We will enroll 93 eligible immunocompromised adults with a negative or low-positive (< 50 U/mL) SARS-CoV-2 spike antibody. In phase 1, the first 10 patients will participate in a lead-in pharmacokinetics (PK) cohort study to determine the optimal dosing interval. Phase 2 will expand this population to 50 participants to examine rates of infusion-related reactions (IRR) with a 30-min 500 mg sotrovimab IV infusion. Phase 3 will be an expansion cohort for further assessment of the safety and tolerability of sotrovimab. In phase 4, the first 10 patients receiving 2000 mg IV of sotrovimab on the second sotrovimab infusion day will comprise a lead-in safety cohort that will inform the duration of observation following administration of the drug. The patients will be followed for safety and COVID-19 events for 36 weeks after the second dose. DISCUSSION: In a previous phase III randomized, placebo-controlled pivotal trial, there were no significant differences in the prevalence of adverse events in patients receiving sotrovimab vs. placebo. Thus, we propose an open-label feasibility study protocol of sotrovimab as pre-exposure prophylaxis for immunocompromised individuals to evaluate its PK in immunocompromised individuals with impaired SARS-CoV-2 humoral immunity and define optimal dosing intervals. We also aim to determine COVID-19 infections over the study period and self-reported quality of life measures throughout the study. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05210101.

2.
Blood Adv ; 6(16): 4821-4830, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35802461

ABSTRACT

CAR T-cell therapy has revolutionized the treatment of hematologic malignancies, although its use may be complicated by toxicities, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and infections. Invasive fungal disease (IFD) has been reported after CAR T-cell therapy, but the incidence in the absence of antifungal prophylaxis is unknown. Optimal prophylaxis strategies are widely debated. We performed a single-center retrospective study of 280 adults receiving CD19 CAR T-cell therapy for non-Hodgkin lymphoma (NHL) from December 2017 through September 2021. Patients did not receive routine antiyeast or antimold prophylaxis. IFD was identified between day of cell infusion and last follow-up. Cumulative incidence functions were calculated at 100 days and 18 months based on time to IFD, using dates of IFD-free death, initiation of salvage treatment, and hematopoietic cell transplantation as competing risks. Eight patients (2.9%) developed IFD, including 3 Pneumocystis jirovecii pneumonia, 3 invasive mold infections (IMIs), and 2 invasive yeast infections (IYIs). The 100-day cumulative incidence of IFD accounting for competing risks was 1.8% (95% confidence interval [CI], 0.8% to 4.4%). Among the 280 patients, early toxicities including CRS (85%) and ICANS (55%) and late toxicities after day 30 including grades 3 and 4 neutropenia (41%) and low CD4 T-cell count (20%) were common. IFD was rare among patients who received CD19 CAR T-cell therapy for NHL in the absence of routine antifungal prophylaxis, despite frequent toxicities. These results suggest that, in settings with low institutional rates of IFD, routine antifungal prophylaxis may not be indicated.


Subject(s)
Hematopoietic Stem Cell Transplantation , Invasive Fungal Infections , Lymphoma, Non-Hodgkin , Receptors, Chimeric Antigen , Adult , Antifungal Agents/therapeutic use , Antigens, CD19 , Cell Count , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunotherapy, Adoptive/methods , Incidence , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/epidemiology , Invasive Fungal Infections/etiology , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/therapy , Retrospective Studies , Risk Factors
3.
Front Cell Dev Biol ; 10: 867257, 2022.
Article in English | MEDLINE | ID: mdl-35433688

ABSTRACT

Cells facing adverse environmental cues respond by inducing signal transduction pathways resulting in transcriptional reprograming. In the budding yeast Saccharomyces cerevisiae, nutrient deprivation stimulates stress response gene (SRG) transcription critical for entry into either quiescence or gametogenesis depending on the cell type. The induction of a subset of SRGs require nuclear translocation of the conserved serine-threonine kinase Rim15. However, Rim15 is also present in unstressed nuclei suggesting that additional activities are required to constrain its activity in the absence of stress. Here we show that Rim15 is directly phosphorylated by cyclin C-Cdk8, the conserved kinase module of the Mediator complex. Several results indicate that Cdk8-dependent phosphorylation prevents Rim15 activation in unstressed cells. First, Cdk8 does not control Rim15 subcellular localization and rim15∆ is epistatic to cdk8∆ with respect to SRG transcription and the execution of starvation programs required for viability. Next, Cdk8 phosphorylates a residue in the conserved PAS domain in vitro. This modification appears important as introducing a phosphomimetic at Cdk8 target residues reduces Rim15 activity. Moreover, the Rim15 phosphomimetic only compromises cell viability in stresses that induce cyclin C destruction as well as entrance into meiosis. Taken together, these findings suggest a model in which Cdk8 phosphorylation contributes to Rim15 repression whilst it cycles through the nucleus. Cyclin C destruction in response to stress inactivates Cdk8 which in turn stimulates Rim15 to maximize SRG transcription and cell survival.

SELECTION OF CITATIONS
SEARCH DETAIL
...