Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 53(1): 1-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37592197

ABSTRACT

Climate change adaptation and mitigation strategies (CCAMS) are changes to the management of production forests motivated by the need to mitigate climate change, or adapt production forests to climate change risks. Sweden is employing CCAMS with unclear implications for biodiversity and forest ecosystem services (ES). Here, we synthesized evidence from 51 published scientific reviews, to evaluate the potential implications for biodiversity and a range of provisioning, regulating, and cultural ES, from the adoption of CCAMS relative to standard forestry practice. The CCAMS assessed were the adoption of (i) mixed-species stands, (ii) continuous cover forestry, (iii) altered rotation lengths, (iv) conversion to introduced tree species, (v) logging residue extraction, (vi) stand fertilization, and (vii) altered ditching/draining practices. We highlight the complexity of biodiversity and ES outcomes, identify knowledge gaps, and emphasize the importance of evidence-based decision making and landscape-scale planning when navigating choices involving the widespread adoption of CCAMS.


Subject(s)
Climate Change , Ecosystem , Conservation of Natural Resources , Forests , Biodiversity , Trees , Europe , Forestry , Introduced Species
3.
Water Air Soil Pollut ; 233(376): 1-26, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36312741

ABSTRACT

Human activities have dramatically increased nitrogen (N) and sulfur (S) deposition, altering forest ecosystem function and structure. Anticipating how changes in deposition and climate impact forests can inform decisions regarding these environmental stressors. Here, we used a dynamic soil-vegetation model (ForSAFE-Veg) to simulate responses to future scenarios of atmospheric deposition and climate change across 23 Northeastern hardwood stands. Specifically, we simulated soil percent base saturation, acid neutralizing capacity (ANC), nitrate (NO3 -) leaching, and understory composition under 13 interacting deposition and climate change scenarios to the year 2100, including anticipated deposition reductions under the Clean Air Act (CAA) and Intergovernmental Panel on Climate Change-projected climate futures. Overall, deposition affected soil responses more than climate did. Soils recovered to historic conditions only when future deposition returned to pre-industrial levels, although anticipated CAA deposition reductions led to a partial recovery of percent base saturation (60 to 72%) and ANC (65 to 71%) compared to historic values. CAA reductions also limited NO3 - leaching to 30 to 66% above historic levels, while current levels of deposition resulted in NO3 - leaching 150 to 207% above historic values. In contrast to soils, understory vegetation was affected strongly by both deposition and climate. Vegetation shifted away from historic and current assemblages with increasing deposition and climate change. Anticipated CAA reductions could maintain current assemblages under current climate conditions or slow community shifts under increased future changes in temperature and precipitation. Overall, our results can inform decision makers on how these dual stressors interact to affect forest health, and the efficacy of deposition reductions under a changing climate.

4.
Environ Pollut ; 213: 977-987, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26873061

ABSTRACT

Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and stomatal O3 flux parameterizations for risk assessment, especially, in under-investigated regions; (xxii) Defining biologically based O3 standards for protection thresholds and critical levels; (xxiii) Use of free-air exposure facilities; (xxiv) Assessing O3 impacts on forest ecosystem services.


Subject(s)
Air Pollution , Climate Change , Droughts , Forests , Nitrogen/pharmacology , Ozone/toxicity , Trees/physiology , Air Pollutants/analysis , Air Pollutants/pharmacology , Air Pollutants/toxicity , Atmosphere/chemistry , Conservation of Natural Resources , Humans , Nitrogen/analysis , Research , Stress, Physiological , Trees/drug effects , Water
5.
Environ Pollut ; 213: 1016-1027, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26809502

ABSTRACT

A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term.


Subject(s)
Air Pollutants/pharmacology , Biodiversity , Climate Change , Forests , Nitrogen/pharmacology , Soil , Trees/drug effects , Abies/drug effects , Abies/growth & development , Atmosphere/chemistry , Climate , Conservation of Natural Resources , France , Models, Biological , Picea/drug effects , Picea/growth & development , Quercus/drug effects , Quercus/growth & development , Trees/growth & development
6.
Environ Pollut ; 159(3): 789-801, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21145634

ABSTRACT

A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate.


Subject(s)
Nitrogen/metabolism , Plants/metabolism , Trees/metabolism , Climate Change , Environmental Monitoring/methods , Forestry , Models, Biological , Nitrogen/analysis , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/metabolism , Sweden , Switzerland
7.
Environ Pollut ; 158(12): 3588-95, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20864233

ABSTRACT

Nitrogen leaching from boreal and temporal forests, where normally most of the nitrogen is retained, has the potential to increase acidification of soil and water and eutrophication of the Baltic Sea. In parts of Sweden, where the nitrogen deposition has been intermediate to high during recent decades, there are indications that the soils are close to nitrogen saturation. In this study, four different approaches were used to assess the risk of nitrogen leaching from forest soils in different parts of Sweden. Nitrate concentrations in soil water and C:N ratios in the humus layer where interpreted, together with model results from mass balance calculations and detailed dynamic modelling. All four approaches pointed at a risk of nitrogen leaching from forest soils in southern Sweden. However, there was a substantial variation on a local scale. Basing the assessment on four different approaches makes the assessment robust.


Subject(s)
Environmental Monitoring , Nitrogen/metabolism , Soil/analysis , Trees/metabolism , Ecosystem , Models, Chemical , Nonlinear Dynamics , Risk Assessment , Sweden
8.
Environ Pollut ; 144(2): 596-609, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16515827

ABSTRACT

The dynamic forest ecosystem model ForSAFE was applied at 16 coniferous forest sites in Sweden to investigate past and future changes in soil chemistry following changes in atmospheric deposition. The simulation shows a considerable historical soil acidification. Acidification in the southwest, where deposition has been greatest, was more expressed in the deepest soil layers, while it was more evenly distributed through the soil profile in central Sweden, and was greater in the upper soil layers in the north. The simulation also shows that a slight recovery took place after the reduction in emissions, but was counteracted by the effect of harvesting. The simulation predicts an increase in the number of acidified sites in the future. The results also suggest that future acidification will be mainly due to the enhanced tree growth resulting from the chronic high deposition of nitrogen and the removal of soil base cations through harvesting.


Subject(s)
Air Pollution/prevention & control , Computer Simulation , Forestry , Models, Theoretical , Soil Pollutants/analysis , Soil/analysis , Aluminum/analysis , Biomass , Cations/analysis , Environmental Monitoring/methods , Hydrogen-Ion Concentration , Nitrogen/analysis , Pinus/physiology , Sulfur/analysis , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...