Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 751: 109825, 2024 01.
Article in English | MEDLINE | ID: mdl-37992885

ABSTRACT

Extracellular signal-regulated kinase 3 (ERK3 also designated MAPK6 - mitogen-activated protein kinase 6) is a ubiquitously expressed kinase participating in the regulation of a broad spectrum of physiological and pathological processes. Targeted inhibition of the kinase may allow the development of novel treatment strategies for a variety of types of cancer and somatic pathologies, as well as preserving metabolic health, combat obesity and diabetes. We chose and synthesized three triazolo [4,5-d]pyrimidin-5-amines proposed previously as putative ERK3 inhibitors to assess their selectivity and biological effects in terms of metabolic state impact in living cells. As it was previously shown that ERK3 is a major regulator of lipolysis in adipocytes, we focused on this process. Our new results indicate that in addition to the previously identified lipolytic enzyme ATGL, ERK3 also regulates hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL). Moreover, this kinase also promotes the abundance of fatty acid synthase (FASN) as well as protein kinase cAMP-activated catalytic subunit alpha (PKACα). To investigate various effects of putative ERK3 inhibitors on lipolysis, we utilized different adipocyte models. We demonstrated that molecules exhibit lipolysis-modulating effects; however, the effects of triazolo [4,5-d]pyrimidin-5-amines based inhibitors on lipolysis are not dependent on ERK3. Subsequently, we revealed a wide range of the compounds' possible targets using a machine learning-based prediction. Therefore, the tested compounds inhibit ERK3 in vitro, but the biological effect of this inhibition is significantly overlapped and modified by some other molecular events related to the non-selective binding to other targets.


Subject(s)
Adipocytes , Lipolysis
2.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119653, 2024 02.
Article in English | MEDLINE | ID: mdl-38104800

ABSTRACT

Inappropriate lipid levels in the blood, as well as its content and composition in different organs, underlie multiple metabolic disorders including obesity, non-alcoholic fatty liver disease, type 2 diabetes, and atherosclerosis. Multiple processes contribute to the complex metabolism of triglycerides (TGs), fatty acids (FAs), and other lipid species. These consist of digestion and absorption of dietary lipids, de novo FAs synthesis (lipogenesis), uptake of TGs and FAs by peripheral tissues, TGs storage in the intracellular depots as well as lipid utilization for ß-oxidation and their conversion to lipid-derivatives. A majority of the enzymatic reactions linked to lipogenesis, TGs synthesis, lipid absorption, and transport are happening at the endoplasmic reticulum, while ß-oxidation takes place in mitochondria and peroxisomes. The Golgi apparatus is a central sorting, protein- and lipid-modifying organelle and hence is involved in lipid metabolism as well. However, the impact of the processes taking part in the Golgi apparatus are often overseen. The protein kinase D (PKD) family (composed of three members, PKD1, 2, and 3) is the master regulator of Golgi dynamics. PKDs are also a sensor of different lipid species in distinct cellular compartments. In this review, we discuss the roles of PKD family members in the regulation of lipid metabolism including the processes executed by PKDs at the Golgi apparatus. We also discuss the role of PKDs-dependent signaling in different cellular compartments and organs in the context of the development of metabolic disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/metabolism , Protein Kinase C/metabolism , Golgi Apparatus/metabolism , Triglycerides/metabolism
3.
EMBO Mol Med ; 15(9): e16858, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37490001

ABSTRACT

Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic ß cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from ß cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting ß cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on ß cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.


Subject(s)
Insulin-Secreting Cells , Humans , Insulin Secretion , Insulin/metabolism , Blood Platelets , Glucose/metabolism
4.
IBRO Neurosci Rep ; 14: 453-461, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37252629

ABSTRACT

Background: Ischemic stroke (IS) is one of the most serious cardiovascular events associated with high risk of death or disability. The growing body of evidence highlights molecular chaperones as especially important players in the pathogenesis of the disease. Since six small proteins called "Hero" have been recently identified as a novel class of chaperones we aimed to evaluate whether SNP rs4644832 in SERF2 gene encoding the member of Hero-proteins, is associated with the risk of IS. Methods: A total of 1929 unrelated Russians (861 patients with IS and 1068 healthy individuals) from Central Russia were recruited into the study. Genotyping was done using a probe-based PCR approach. Statistical analysis was carried out in the whole group and stratified by age, gender and smoking status. Results: Analysis of the link between rs4644832 SERF2 and IS showed that G allele is the risk factor of IS only in females (OR=1.29, 95%CI 1.02-1.64, Padj=0.035). In addition, the analysis of associations of rs4644832 SERF2 and IS depending on the smoking status revealed that this genetic variant is associated with an increased risk of IS exclusively in non-smoking individuals (OR=1.26, 95%CI 1.01-1.56, P = 0.041). Discussion: Sex- and smoking interactions between rs4644832 polymorphism and IS may be related to the impact of tobacco components metabolism and sex hormones on SERF2 expression. Conclusion: The present study reveals the novel genetic association between rs4644832 polymorphism and the risk of IS suggesting that SERF2, the part of the protein quality control system, contributes to the pathogenesis of the disease.

6.
J Transl Med ; 20(1): 562, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471396

ABSTRACT

Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.


Subject(s)
Mitochondrial Diseases , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Genetic Therapy , Inheritance Patterns
7.
Biomark Insights ; 17: 11772719221095676, 2022.
Article in English | MEDLINE | ID: mdl-35492378

ABSTRACT

Abdominal aortic aneurysm (AAA) is a potentially life-threatening disorder with a mostly asymptomatic course where the abdominal aorta is weakened and bulged. Cytokines play especially important roles (both positive and negative) among the molecular actors of AAA development. All the inflammatory cascades, extracellular matrix degradation and vascular smooth muscle cell apoptosis are driven by cytokines. Previous studies emphasize an altered expression and a changed epigenetic regulation of key cytokines in AAA tissue samples. Such cytokines as IL-6, IL-10, IL-12, IL-17, IL-33, IL-1ß, TGF-ß, TNF-α, IFN-γ, and CXCL10 seem to be crucial in AAA pathogenesis. Some data obtained in animal studies show a protective function of IL-10, IL-33, and canonical TGF-ß signaling, as well as a dual role of IL-4, IFN-γ and CXCL10, while TNF-α, IL-1ß, IL-6, IL-12/IL-23, IL-17, CCR2, CXCR2, CXCR4 and the TGF-ß noncanonical pathway are believed to aggravate the disease. Altogether data highlight significance of cytokines as informative markers and predictors of AAA. Pathologic serum/plasma concentrations of IL-1ß, IL-2, IL-6, TNF-α, IL-10, IL-8, IL-17, IFN-γ, and PDGF have been already found in AAA patients. Some of the changes correlate with the size of aneurysms. Moreover, the risk of AAA is associated with polymorphic variants of genes encoding cytokines and their receptors: CCR2 (rs1799864), CCR5 (Delta-32), IL6 (rs1800796 and rs1800795), IL6R (rs12133641), IL10 (rs1800896), TGFB1 (rs1800469), TGFBR1 (rs1626340), TGFBR2 (rs1036095, rs4522809, rs1078985), and TNFA (rs1800629). Finally, 5 single-nucleotide polymorphisms in gene coding latent TGF-ß-binding protein (LTBP4) and an allelic variant of TGFB3 are related to a significantly slower AAA annual growth rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...