Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2402155, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795001

ABSTRACT

Two-dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials' properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar-blind photodiodes and light-emitting diodes as applications. However, achieving commercial viability requires wafer-scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one-step synthesis of 2D GaS is introduced via metal-organic chemical vapor deposition on sapphire substrates. The pulsed-mode deposition of industry-standard precursors promotes 2D growth by inhibiting the vapor phase and on-surface pre-reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin-film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.

3.
Small Methods ; 7(9): e2300453, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37246264

ABSTRACT

Characterizing long-range electric fields and built-in potentials in functional materials at nano to micrometer scales is of supreme importance for optimizing devices, e.g., the functionality of semiconductor hetero-structures or battery materials is determined by the electric fields established at interfaces which can also vary spatially. In this study, momentum-resolved four-dimensional scanning transmission electron microscopy (4D-STEM) is proposed for the quantification of these potentials and the optimization steps required to reach quantitative agreement with simulations for the GaAs/AlAs hetero-junction model system are shown. Using STEM the differences in the mean inner potentials (∆MIP) of two materials forming an interface and resulting dynamic diffraction effects have to be considered. This study shows that the measurement quality is significantly improved by precession, energy filtering and a off-zone-axis alignment of the specimen. Complementary simulations yielding a ∆MIP of 1.3 V confirm that the potential drop due to charge transfer at the intrinsic interface is ≈0.1 V, in agreement with experimental and theoretical values found in literture. These results show the feasibility of accurately measuring built-in potentials across hetero-interfaces of real device structures and its promising application for more complex interfaces of other polycrystalline materials on the nanometer scale.

4.
Micron ; 114: 32-41, 2018 11.
Article in English | MEDLINE | ID: mdl-30075415

ABSTRACT

In order to overcome the limitations of silicon-based electronics, the integration of optically active III-V compounds is a promising approach. Nonetheless, their integration is far from trivial and control as well as understanding of corresponding growth kinetics, and in particular the occurrence and termination of antiphase defects, is of great relevance. In this work, we focus on the three-dimensional reconstruction of such boundaries in gallium phosphide from single scanning transmission electron microscopy images. In the high angle annular dark-field imaging mode, the appearance of these antiphase boundaries is strongly determined by the chemical composition of each atomic column and reflects the ratio of transmitted anti- to mainphase. Therefore it is possible to translate measured intensities to the depth location of these boundaries by utilizing simulation data. The necessary spatial resolution for these column-by-column mappings is achieved via electron optical aberration correction within the microscope. Hence, the complete 3D orientation of these defects can be measured at atomic resolution and correlated to growth parameters. Finally, we present a method to reconstruct large areas from well sampled images and retrieve information about complex embedded nanoscale structures at the atomic scale.

5.
J Microsc ; 268(3): 239-247, 2017 12.
Article in English | MEDLINE | ID: mdl-28862755

ABSTRACT

The surfaces of thin transmission electron microscopy (TEM) specimens of strained heterostructures can relax. The resulting bending of the lattice planes significantly influences high-angle annular dark field (HAADF) measurements. We investigate the impact by evaluating the intensities measured at the atomic columns as well as their positions in high-resolution HAADF images. In addition, the consequences in the diffraction plane will be addressed by simulated position averaged convergent beam electron diffraction (PACBED) patterns. The experimental column intensities and positions acquired from a strained Ga(P,As) quantum well (QW) embedded in a in a GaP matrix agree very well with frozen phonon contrast simulations, if the surface relaxation is taken into account by finite element relaxation. Neglecting the surface relaxation the As content of the QW can be significantly underestimated. Taking the effects into account correctly, we find that the lower interface of the investigated Ga(P,As) QW is atomically abrupt whereas the upper one is smeared out.

6.
Ultramicroscopy ; 181: 8-16, 2017 10.
Article in English | MEDLINE | ID: mdl-28478347

ABSTRACT

Surface relaxation of thin transmission electron microscopy (TEM) specimens of strained layers results in a severe bending of lattice planes. This bending significantly displaces atoms from their ideal channeling positions which has a strong impact on the measured annular dark field (ADF) intensity. With the example of GaAs quantum wells (QW) embedded in a GaP barrier, we model the resulting displacements by elastic theory using the finite element (FE) formalism. Relaxed and unrelaxed super cells served as input for state of the art frozen phonon simulation of atomic resolution ADF images. We systematically investigate the dependencies on the sample´s geometric parameters, i.e. QW width and TEM sample thickness, by evaluating the simulated intensities at the atomic column´s positions as well as at the background positions in between. Depending on the geometry the ADF intensity can be affected in a range several nm from the actual interface. Moreover, we investigate the influence of the surface relaxation on the angular distribution of the scattered intensity. At high scattering angles we observe an intensity reduction at the interface as well as in the GaP barrier due to de-channeling. The amount of intensity reduction at an atomic column is directly proportional to its mean square displacement. On the contrary we find a clearly increased intensity at low angles caused by additional diffuse scattering. We discuss the implications for quantitative evaluations as well as strategies to compensate for the reduced intensities.

7.
Ultramicroscopy ; 177: 91-96, 2017 06.
Article in English | MEDLINE | ID: mdl-28334576

ABSTRACT

We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

8.
Ultramicroscopy ; 169: 1-10, 2016 10.
Article in English | MEDLINE | ID: mdl-27391526

ABSTRACT

Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible.

9.
Ultramicroscopy ; 163: 19-30, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26855206

ABSTRACT

The introduction of preparation artifacts is almost inevitable when producing samples for (scanning) transmission electron microscopy ((S)TEM). These artifacts can be divided in extrinsic artifacts like damage processes and intrinsic artifacts caused by the deviations from the volume strain state in thin elastically strained material systems. The reduction and estimation of those effects is of great importance for the quantitative analysis of (S)TEM images. Thus, optimized ion beam preparation conditions are investigated for high quality samples. Therefore, the surface topology is investigated directly with atomic force microscopy (AFM) on the actual TEM samples. Additionally, the sectioning of those samples by a focused ion beam (FIB) is used to investigate the damage depth profile directly in the TEM. The AFM measurements show good quantitative agreement of sample height modulation due to strain relaxation to finite elements simulations. Strong indications of (sub-) surface damage by ion beams are observed. Their influence on high angle annular dark field (HAADF) imaging is estimated with focus on thickness determination by absolute intensity methods. Data consolidation of AFM and TEM measurements reveals a 3.5nm surface amorphization, negligible surface roughness on the scale of angstroms and a sub-surface damage profile in the range of up to 8.0nm in crystalline gallium arsenide (GaAs) and GaAs-based ternary alloys. A correction scheme for thickness evaluation of absolute HAADF intensities is proposed and applied for GaAs based materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...