Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 20(12): 1883-1886, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37996752

ABSTRACT

Cardinal v.3 is an open-source software for reproducible analysis of mass spectrometry imaging experiments. A major update from its previous versions, Cardinal v.3 supports most mass spectrometry imaging workflows. Its analytical capabilities include advanced data processing such as mass recalibration, advanced statistical analyses such as single-ion segmentation and rough annotation-based classification, and memory-efficient analyses of large-scale multitissue experiments.


Subject(s)
Image Processing, Computer-Assisted , Software , Mass Spectrometry/methods
2.
bioRxiv ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36865170

ABSTRACT

Cardinal v3 is an open source software for reproducible analysis of mass spectrometry imaging experiments. A major update from its previous versions, Cardinal v3 supports most mass spectrometry imaging workflows. Its analytical capabilities include advanced data processing such as mass re-calibration, advanced statistical analyses such as single-ion segmentation and rough annotation-based classification, and memory-efficient analyses of large-scale multi-tissue experiments.

3.
Bioinformatics ; 39(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36744928

ABSTRACT

MOTIVATION: Mass Spectrometry Imaging (MSI) analyzes complex biological samples such as tissues. It simultaneously characterizes the ions present in the tissue in the form of mass spectra, and the spatial distribution of the ions across the tissue in the form of ion images. Unsupervised clustering of ion images facilitates the interpretation in the spectral domain, by identifying groups of ions with similar spatial distributions. Unfortunately, many current methods for clustering ion images ignore the spatial features of the images, and are therefore unable to learn these features for clustering purposes. Alternative methods extract spatial features using deep neural networks pre-trained on natural image tasks; however, this is often inadequate since ion images are substantially noisier than natural images. RESULTS: We contribute a deep clustering approach for ion images that accounts for both spatial contextual features and noise. In evaluations on a simulated dataset and on four experimental datasets of different tissue types, the proposed method grouped ions from the same source into a same cluster more frequently than existing methods. We further demonstrated that using ion image clustering as a pre-processing step facilitated the interpretation of a subsequent spatial segmentation as compared to using either all the ions or one ion at a time. As a result, the proposed approach facilitated the interpretability of MSI data in both the spectral domain and the spatial domain. AVAILABILITYAND IMPLEMENTATION: The data and code are available at https://github.com/DanGuo1223/mzClustering. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neural Networks, Computer , Mass Spectrometry/methods , Cluster Analysis , Ions/analysis
4.
Bioinformatics ; 35(14): i208-i217, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31510675

ABSTRACT

MOTIVATION: Mass spectrometry imaging (MSI) characterizes the spatial distribution of ions in complex biological samples such as tissues. Since many tissues have complex morphology, treatments and conditions often affect the spatial distribution of the ions in morphology-specific ways. Evaluating the selectivity and the specificity of ion localization and regulation across morphology types is biologically important. However, MSI lacks algorithms for segmenting images at both single-ion and spatial resolution. RESULTS: This article contributes spatial-Dirichlet Gaussian mixture model (DGMM), an algorithm and a workflow for the analyses of MSI experiments, that detects components of single-ion images with homogeneous spatial composition. The approach extends DGMMs to account for the spatial structure of MSI. Evaluations on simulated and experimental datasets with diverse MSI workflows demonstrated that spatial-DGMM accurately segments ion images, and can distinguish ions with homogeneous and heterogeneous spatial distribution. We also demonstrated that the extracted spatial information is useful for downstream analyses, such as detecting morphology-specific ions, finding groups of ions with similar spatial patterns, and detecting changes in chemical composition of tissues between conditions. AVAILABILITY AND IMPLEMENTATION: The data and code are available at https://github.com/Vitek-Lab/IonSpattern. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Ions/analysis , Mass Spectrometry , Normal Distribution , Workflow
5.
Bioinformatics ; 33(19): 3142-3144, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28633357

ABSTRACT

Summary: We introduce matter , an R package for direct interactions with larger-than-memory datasets, stored in an arbitrary number of files of any size. matter is primarily designed for datasets in new and rapidly evolving file formats, which may lack extensive software support. matter enables a wide variety of data exploration and manipulation steps, and is extensible to many bioinformatics applications. It supports reproducible research by minimizing the need of converting and storing data in multiple formats. We illustrate the performance of matter in conjunction with the Bioconductor package Cardinal for analysis of high-resolution, high-throughput mass spectrometry imaging experiments. Availability: The package, vignettes, and examples of applications in several areas of bioinformatics are available open-source at www.bioconductor.org under the Artistic-2.0 license. Contact: o.vitek@neu.edu.

SELECTION OF CITATIONS
SEARCH DETAIL
...