Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(5): 494, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691200

ABSTRACT

This study investigated the impact of soil type, pH, and geographical locations on the accumulation of arsenic (As), lead (Pb), and cadmium (Cd) in rice grains cultivated in Ghana. One hundred rice farms for the sampling of rice grains and soil were selected from two regions in Ghana-Volta and Oti. The concentrations of As, Pb, and Cd were analyzed using ICP-OES. Speciation modeling and multivariate statistics were employed to ascertain the relations among measured parameters. The results showed significant variations in soil-As, Pb, and Cd levels across different soil types and pH ranges, with the highest soil-As and Cd found in alkaline vertisols. For soil-As and Cd, the vertisols with a pH more than 7.0 exhibited the highest mean concentration of As (2.51 ± 0.932 mgkg-1) and Cd (1.00 ± 0.244 mgkg-1) whereas for soil-Pb, the luvisols of soil types with a pH less than 6.0 exhibited the highest mean concentration of Pb (4.91 ± 1.540 mgkg-1). Grain As, Pb, and Cd also varied across soil types and pH levels. In regards to grain-As, the vertisols soil type, with a pH less than 6.0, shows the highest mean concentration of grain As, at 0.238 ± 0.107 mgkg-1. Furthermore, vertisols soil types with a pH level less than 6.0 showed the highest mean concentration of grain Cd, averaging at 0.231 ± 0.068 mgkg-1 while luvisols, with a pH less than 6.0, exhibited the highest mean concentration of grain Pb at 0.713 ± 0.099 mgkg-1. Speciation modeling indicated increased bioavailability of grains Cd2+ and Pb2+ ions in acidic conditions. A significant interaction was found between soil-Cd and pH, affecting grain-As uptake. The average concentrations of soil As, Pb, and Cd aligned with international standards. Generally, the carcinogenic metals detected in grain samples collected from the Volta region are higher than that of the Oti region but the differences are insignificant, and this may be attributed to geographical differences and anthropogenic activities. About 51% of the study area showed a hazard risk associated with grain metal levels, although, no carcinogenic risks were recognized. This study highlights the complex soil-plant interactions governing metal bioaccumulation and emphasizes the need for tailored strategies to minimize metal transfer into grains.


Subject(s)
Arsenic , Cadmium , Environmental Monitoring , Oryza , Soil Pollutants , Soil , Soil Pollutants/analysis , Ghana , Soil/chemistry , Oryza/chemistry , Cadmium/analysis , Hydrogen-Ion Concentration , Arsenic/analysis , Lead/analysis , Agriculture
2.
Malar J ; 17(1): 265, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30012143

ABSTRACT

BACKGROUND: Malaria is an infectious disease that causes many deaths in sub-Saharan Africa. In resource-poor malaria endemic communities, mosquito coils are commonly applied in households to repel the vector mosquito that transmits malaria parasites. In applying these coils, users have mainly been interested in the environmental health benefits potentially derived from repelling the mosquito, while oblivious of the environmental health risks that may be associated with exposure to emissions from the use of mosquito coil. This study evaluated the effectiveness of the mosquito coil, ascertained and/or estimated the toxic emissions that may emanate from the coil, and determined its overall appropriateness by conducting a risk-benefit analysis of the use of this strategy in malaria prevention at household levels. METHODS: The repellent ability of mosquito coils was tested by conducting a mosquito knockdown/mortality test in experimental chambers synonymous of local room spaces and conditions. The gaseous and particulate emissions from the mosquito coil were also analysed. Additional scenarios were generated with the Monte Carlo technique and a risk-benefit analysis was conducted applying @Risk software. RESULTS: Mosquito mortality arising from the application of various mosquito coils averagely ranged between 24 and 64%, which might not provide adequate repellency effect. Emissions from the mosquito coil were also found to contain CO, VOCs, SO2, NO2, PM2.5 and PM10. The Hazard Index of the respective pollutants characterized over a lifetime exposure scenario was low (< 1 for each pollutant), which suggests that the concentrations of the specific chemicals and particulate matter emitted from the mosquito coil may not constitute adverse environmental health risk. CONCLUSION: Although the risk of morbidity from the use of the mosquito coil was low, the coil yielded limited protection as a mosquito avoidance method. It may, therefore, have a reduced benefit in controlling malaria and should be applied sparingly in a highly regulated manner only when traditionally proven effective vector control strategies are not available or too expensive for resource-poor malaria endemic regions.


Subject(s)
Air Pollution, Indoor/analysis , Anopheles , Environmental Health , Insect Repellents , Insecticides , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Animals , Humans , Insect Repellents/adverse effects , Insecticides/adverse effects , Mosquito Control/instrumentation , Mosquito Control/methods , Risk Assessment
3.
Environ Monit Assess ; 188(5): 261, 2016 May.
Article in English | MEDLINE | ID: mdl-27037696

ABSTRACT

Gold mining has increased the prevalence and occurrence of heavy metals contamination at the Earth's surface and is causing major concern due to the potential risk involved. This study investigated the impact of gold mine on heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Fe, Mn, and Zn) pollution and evaluated the potential health risks to local residents via consumption of polluted groundwater, agricultural soils, and vegetable crops grown at three community farms surrounding the mine at Obuasi municipality of Ghana. The results showed levels of As, Cd, Cr, Hg, Fe, and Mn higher than the allowable drinking water standards. The vegetable samples analyzed showed high accumulation of As and Ni above the normal value. Bioaccumulation factors of heavy metals were significantly higher for vegetables grown in the Sanso soils. Estimated average daily intake and hazard quotient for As in drinking water as well as As, Pb, and Hg in vegetable samples exceeded permissible limit. Unacceptable non-cancer health risk levels were found in vegetable samples analyzed for As, Pb, and Hg. An unacceptable cancer risk was found via drinking of groundwater, in consumption of vegetables, and in soil. The hazard index for vegetables was higher than 1, indicating very high health risk to heavy metals contamination through consumption of vegetables grown around the sampling sites. The results recommend the need for regular monitoring of groundwater and food crops to protect consumers' health.


Subject(s)
Environmental Exposure/analysis , Metals, Heavy/analysis , Mining , Soil Pollutants/analysis , Cities , Crops, Agricultural , Drinking Water , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Ghana , Gold , Humans , Mercury , Risk Assessment , Soil , Vegetables
4.
Environ Monit Assess ; 175(1-4): 551-61, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20559713

ABSTRACT

A number of pesticide residues in fruits were monitored at five markets in the Accra Metropolis for almost a year. Locally produced fruits (pawpaw and tomato) and imported apple were purchased from these selected markets in the metropolis and analyzed for pesticide residues by gas chromatography equipped with electron capture detector. In all, 320 sampled fruits were extracted and analyzed for pesticide residues, mainly organochlorines (γ-HCH, δ-HCH, aldrin, heptachlor, γ-chlordane, heptachlor epoxide, α-endosulfan, p,p'-DDE, endrin, ß-endosulfan, o,p'-DDT, endrin aldehyde, p,p'- DDT, endrin ketone, and methoxychlor). The data revealed that 32.8% of the fruit samples analyzed contained residues of the monitored insecticides above the accepted maximum residue limit (MRL) whereas 48.7% were below the MRL. Nonetheless, the continuous consumption of such fruits with modest pesticide levels can accumulate and could result in deadly chronic effects.


Subject(s)
Fruit/chemistry , Pesticide Residues/analysis , Aldrin/analysis , Chromatography, Gas , DDT/analysis , Endosulfan/analysis , Ghana , Heptachlor/analysis , Hexachlorocyclohexane/analysis , Hydrocarbons, Chlorinated/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...