Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 435(22): 168281, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37734431

ABSTRACT

Amyloid aggregation is a key process in amyloidoses and neurodegenerative diseases. Hydrophobicity is one of the major driving forces for this type of aggregation, as an increase in hydrophobicity generally correlates with aggregation susceptibility and rate. However, most experimental systems in vitro and prediction tools in silico neglect the contribution of protective osmolytes present in the cellular environment. Here, we assessed the role of hydrophobic mutations in amyloid aggregation in the presence of osmolytes. To achieve this goal, we used the model protein human muscle acylphosphatase (mAcP) and mutations to leucine that increased its hydrophobicity without affecting its thermodynamic stability. Osmolytes significantly slowed down the aggregation kinetics of the hydrophobic mutants, with an effect larger than that observed on the wild-type protein. The effect increased as the mutation site was closer to the middle of the protein sequence. We propose that the preferential exclusion of osmolytes from mutation-introduced hydrophobic side-chains quenches the aggregation potential of the ensemble of partially unfolded states of the protein by inducing its compaction and inhibiting its self-assembly with other proteins. Our results suggest that including the effect of the cellular environment in experimental setups and predictive softwares, for both mechanistic studies and drug design, is essential in order to obtain a more complete combination of the driving forces of amyloid aggregation.


Subject(s)
Acylphosphatase , Amyloid , Protein Aggregates , Humans , Amino Acid Sequence , Amyloid/chemistry , Amyloid/genetics , Leucine/chemistry , Leucine/genetics , Protein Folding , Protein Aggregates/genetics , Acylphosphatase/chemistry , Acylphosphatase/genetics , Hydrophobic and Hydrophilic Interactions , Solubility , Osmotic Pressure , Urea/chemistry
2.
J Med Chem ; 66(14): 9519-9536, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37433124

ABSTRACT

Natural aminosterols are promising drug candidates against neurodegenerative diseases, like Alzheimer and Parkinson, and one relevant protective mechanism occurs via their binding to biological membranes and displacement or binding inhibition of amyloidogenic proteins and their cytotoxic oligomers. We compared three chemically different aminosterols, finding that they exhibited different (i) binding affinities, (ii) charge neutralizations, (iii) mechanical reinforcements, and (iv) key lipid redistributions within membranes of reconstituted liposomes. They also had different potencies (EC50) in protecting cultured cell membranes against amyloid-ß oligomers. A global fitting analysis led to an analytical equation describing quantitatively the protective effects of aminosterols as a function of their concentration and relevant membrane effects. The analysis correlates aminosterol-mediated protection with well-defined chemical moieties, including the polyamine group inducing a partial membrane-neutralizing effect (79 ± 7%) and the cholestane-like tail causing lipid redistribution and bilayer mechanical resistance (21 ± 7%), linking quantitatively their chemistry to their protective effects on biological membranes.


Subject(s)
Neurodegenerative Diseases , Protein Aggregates , Humans , Cell Membrane/metabolism , Amyloidogenic Proteins/chemistry , Neurodegenerative Diseases/metabolism , Lipids , Lipid Bilayers/metabolism , Amyloid beta-Peptides/metabolism
3.
Front Mol Biosci ; 9: 981312, 2022.
Article in English | MEDLINE | ID: mdl-36158582

ABSTRACT

Proteins from hyperthermophilic organisms are evolutionary optimised to adopt functional structures and dynamics under conditions in which their mesophilic homologues are generally inactive or unfolded. Understanding the nature of such adaptation is of crucial interest to clarify the underlying mechanisms of biological activity in proteins. Here we measured NMR residual dipolar couplings of a hyperthermophilic acylphosphatase enzyme at 80°C and used these data to generate an accurate structural ensemble representative of its native state. The resulting energy landscape was compared to that obtained for a human homologue at 37°C, and additional NMR experiments were carried out to probe fast (15N relaxation) and slow (H/D exchange) backbone dynamics, collectively sampling fluctuations of the two proteins ranging from the nanosecond to the millisecond timescale. The results identified key differences in the strategies for protein-protein and protein-ligand interactions of the two enzymes at the respective physiological temperatures. These include the dynamical behaviour of a ß-strand involved in the protection against aberrant protein aggregation and concerted motions of loops involved in substrate binding and catalysis. Taken together these results elucidate the structure-dynamics-function relationship associated with the strategies of thermal adaptation of protein molecules.

4.
Molecules ; 27(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35807552

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conformational state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and ß-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative conformation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Frontotemporal Lobar Degeneration , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Dimerization , Frontotemporal Lobar Degeneration/metabolism , Humans , Inclusion Bodies/metabolism , Protein Aggregates , Protein Conformation, beta-Strand , Protein Domains , Protein Folding
5.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35337074

ABSTRACT

The release of monomers from the homotetrameric protein transthyretin (TTR) is the first event of a cascade, eventually leading to sporadic or familial TTR amyloidoses. Thus, ligands able to stabilize TTR and inhibit monomer release are subject of intense scrutiny as potential treatments against these pathologies. Here, we investigated the interaction between TTR and a non-glycated derivative of the main olive polyphenol, oleuropein (OleA), known to interfere with TTR aggregation. We coupled fluorescence studies with molecular docking to investigate the OleA/TTR interaction using wild-type TTR, a monomeric variant, and the L55P cardiotoxic mutant. We characterized a fluorescence band emitted by OleA upon formation of the OleA/TTR complex. Exploiting this signal, we found that a poorly specific non-stoichiometric interaction occurs on the surface of the protein and a more specific stabilizing interaction takes place in the ligand binding pocket of TTR, exhibiting a KD of 3.23 ± 0.32 µM, with two distinct binding sites. OleA interacts with TTR in different modes, stabilizing it and preventing its dissociation into monomers, with subsequent misfolding. This result paves the way to the possible use of OleA to prevent degenerative diseases associated with TTR misfolding.

6.
Int J Mol Sci ; 21(17)2020 Aug 29.
Article in English | MEDLINE | ID: mdl-32872449

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) is a 414-residue long nuclear protein whose deposition into intraneuronal insoluble inclusions has been associated with the onset of amyotrophic lateral sclerosis (ALS) and other diseases. This protein is physiologically a homodimer, and dimerization occurs through the N-terminal domain (NTD), with a mechanism on which a full consensus has not yet been reached. Furthermore, it has been proposed that this domain is able to affect the formation of higher molecular weight assemblies. Here, we purified this domain and carried out an unprecedented characterization of its folding/dimerization processes in solution. Exploiting a battery of biophysical approaches, ranging from FRET to folding kinetics, we identified a head-to-tail arrangement of the monomers within the dimer. We found that folding of NTD proceeds through the formation of a number of conformational states and two parallel pathways, while a subset of molecules refold slower, due to proline isomerism. The folded state appears to be inherently prone to form high molecular weight assemblies. Taken together, our results indicate that NTD is inherently plastic and prone to populate different conformations and dimeric/multimeric states, a structural feature that may enable this domain to control the assembly state of TDP-43.


Subject(s)
DNA-Binding Proteins/chemistry , Mutation , Circular Dichroism , DNA-Binding Proteins/genetics , Humans , Kinetics , Models, Molecular , Protein Conformation , Protein Domains , Protein Folding , Protein Multimerization
7.
Biomacromolecules ; 21(3): 1112-1125, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32011129

ABSTRACT

Alzheimer's disease is associated with the deposition of the amyloid-ß peptide (Aß) into extracellular senile plaques in the brain. In vitro and in vivo observations have indicated that transthyretin (TTR) acts as an Aß scavenger in the brain, but the mechanism has not been fully resolved. We have monitored the aggregation process of Aß40 by thioflavin T fluorescence, in the presence or absence of different concentrations of preformed seed aggregates of Aß40, of wild-type tetrameric TTR (WT-TTR), and of a variant engineered to be stable as a monomer (M-TTR). Both WT-TTR and M-TTR were found to inhibit specific steps of the process of Aß40 fibril formation, which are primary and secondary nucleations, without affecting the elongation of the resulting fibrils. Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aß40 oligomers formed in the aggregation reaction and inhibit their conversion into the shortest fibrils able to elongate. Using biophysical methods, TTR was found to change some aspects of its overall structure following such interactions with Aß40 oligomers, as well as with oligomers of Aß42, while maintaining its overall topology. Hence, it is likely that the predominant mechanism by which TTR exerts its protective role lies in the binding of TTR to the Aß oligomers and in inhibiting primary and secondary nucleation processes, which limits both the toxicity of Aß oligomers and the ability of the fibrils to proliferate.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/toxicity , Humans , Macromolecular Substances , Peptide Fragments , Plaque, Amyloid , Prealbumin/genetics
8.
Int J Mol Sci ; 20(22)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703381

ABSTRACT

Deposition of soluble proteins as insoluble amyloid fibrils is associated with a number of pathological states. There is a growing interest in the identification of small molecules that can prevent proteins from undergoing amyloid fibril formation. In the present study, a series of small aromatic compounds with different substitutions of 1,3,5-triphenylbenzene have been synthesized and their possible effects on amyloid fibril formation by hen egg white lysozyme (HEWL), a model protein for amyloid formation, and of their resulting toxicity were examined. The inhibitory effect of the compounds against HEWL amyloid formation was analyzed using thioflavin T and Congo red binding assays, atomic force microscopy, Fourier-transform infrared spectroscopy, and cytotoxicity assays, such as the 3-(4,5-Dimethylthiazol)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay and caspase-3 activity measurements. We found that all compounds in our screen were efficient inhibitors of HEWL fibril formation and their associated toxicity. We showed that electron-withdrawing substituents such as -F and -NO2 potentiated the inhibitory potential of 1,3,5-triphenylbenzene, whereas electron-donating groups such as -OH, -OCH3, and -CH3 lowered it. These results may ultimately find applications in the development of potential inhibitors against amyloid fibril formation and its biologically adverse effects.


Subject(s)
Amyloid/chemistry , Avian Proteins/chemistry , Benzene Derivatives/chemistry , Muramidase/chemistry , Protein Aggregates , Animals , Cell Line, Tumor , Chickens , Humans
9.
Sci Rep ; 9(1): 10988, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358790

ABSTRACT

We have studied the intrinsic fluorescence spectra of a monomeric variant of human transthyretin (M-TTR), a protein involved in the transport of the thyroid hormone and retinol and associated with various forms of amyloidosis, extending our analysis to the second order derivative of the spectra. This procedure allowed to identify three peaks readily assigned to Trp41, as the three peaks were also visible in a mutant lacking the other tryptophan (Trp79) and had similar FRET efficiency values with an acceptor molecule positioned at position 10. The wavelength values of the three peaks and their susceptibility to acrylamide quenching revealed that the three corresponding conformers experience different solvent-exposure, polarity of the environment and flexibility. We could monitor the three peaks individually in urea-unfolding and pH-unfolding curves. This revealed changes in the distribution of the corresponding conformers, indicating conformational changes and alterations of the dynamics of the microenvironment that surrounds the associated tryptophan residue in such transitions, but also native-like conformers of such residues in unfolded states. We also found that the amyloidogenic state adopted by M-TTR at mildly low pH has a structural and dynamical microenvironment surrounding Trp41 indistinguishable from that of the fully folded and soluble state at neutral pH.


Subject(s)
Prealbumin/chemistry , Fluorescence , Fluorescence Resonance Energy Transfer , Humans , Hydrogen-Ion Concentration , Point Mutation , Prealbumin/genetics , Protein Conformation , Protein Unfolding , Spectrometry, Fluorescence , Thermodynamics
10.
J Biol Chem ; 294(5): 1488-1489, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30710006

ABSTRACT

Novel imaging techniques with ever-increasing resolution are invaluable tools for the study of protein deposition, as they allow the self-assembly of proteins to be directly investigated in living cells. For the first time, the acceleration in Aß42 aggregation induced by the Arctic mutation was monitored in cells, revealing a number of distinct morphologies that form sequentially. This approach will help discriminate the impacts of mutations on amyloid protein processing, Aß aggregation propensity, and other mechanistic outcomes.


Subject(s)
Amyloid beta-Peptides/chemistry , Microscopy, Confocal/methods , Peptide Fragments/chemistry , Protein Multimerization , Amyloid beta-Peptides/ultrastructure , Humans , Peptide Fragments/ultrastructure
11.
J Biol Chem ; 293(26): 10303-10313, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29760185

ABSTRACT

A set of missense mutations in the gene encoding profilin-1 has been linked to the onset of familial forms of ALS (fALS), also known as Lou Gehrig's disease. The pathogenic potential of these mutations is linked to the formation of intracellular inclusions of the mutant proteins and correlates with the mutation-induced destabilization of its native, fully folded state. However, the mechanism by which these mutations promote misfolding and self-assembly is yet unclear. Here, using temperature-jump and stopped-flow kinetic measurements, we show that, during refolding, WT profilin-1 transiently populates a partially folded (PF) state endowed with hydrophobic clusters exposed to the solvent and with no detectable secondary structure. We observed that this conformational state is marginally stable at neutral pH but becomes significantly populated at mildly acidic pH. Interestingly, the fALS-associated mutations did not cause a change in the refolding mechanism of profilin-1, but induced a stabilization of the PF state. In the presence of preformed profilin-1 aggregates, the PF state, unlike the unfolded and folded states, could interact with these aggregates via nonspecific hydrophobic interactions and also increase thioflavin-T fluorescence, revealing its amyloidogenic potential. Moreover, in the variants tested, we found a correlation between conformational stability of PF and aggregation propensity, defining this conformational state as an aggregation-prone folding intermediate. In conclusion, our findings indicate that mutation-induced stabilization of a partially folded state can enhance profilin-1 aggregation and thereby contribute to the pathogenicity of the mutations.


Subject(s)
Profilins/chemistry , Profilins/metabolism , Protein Aggregates , Protein Folding , Amyotrophic Lateral Sclerosis/genetics , Humans , Hydrogen-Ion Concentration , Mutation , Profilins/genetics , Protein Refolding , Protein Stability
12.
Biophys J ; 112(12): 2540-2551, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28636911

ABSTRACT

The acylphosphatase from Sulfolobus solfataricus (Sso AcP) is a globular protein able to aggregate in vitro from a native-like conformational ensemble without the need for a transition across the major unfolding energy barrier. This process leads to the formation of assemblies in which the protein retains its native-like structure, which subsequently convert into amyloid-like aggregates. Here, we investigate the mechanism by which Sso AcP aggregates in vivo to form bacterial inclusion bodies after expression in E. coli. Shortly after the initiation of expression, Sso AcP is incorporated into inclusion bodies as a native-like protein, still exhibiting small but significant enzymatic activity. Additional experiments revealed that this overall process of aggregation is enhanced by the presence of the unfolded N-terminal region of the sequence and by destabilization of the globular segment of the protein. At later times, the Sso AcP molecules in the inclusion bodies lose their native-like properties and convert into ß-sheet-rich amyloid-like structures, as indicated by their ability to bind thioflavin T and Congo red. These results show that the aggregation behavior of this protein is similar in vivo to that observed in vitro, and that, at least for a predominant part of the protein population, the transition from a native to an amyloid-like structure occurs within the aggregate state.


Subject(s)
Acid Anhydride Hydrolases/chemistry , Archaeal Proteins/chemistry , Inclusion Bodies/enzymology , Protein Aggregates , Sulfolobus solfataricus/enzymology , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Amyloid/chemistry , Amyloid/metabolism , Archaeal Proteins/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Escherichia coli , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Aggregation, Pathological , Protein Folding , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Acylphosphatase
13.
Cell Mol Life Sci ; 74(19): 3577-3598, 2017 10.
Article in English | MEDLINE | ID: mdl-28478513

ABSTRACT

Transthyretin (TTR) is an extracellular protein able to deposit into well-defined protein aggregates called amyloid, in pathological conditions known as senile systemic amyloidosis, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and leptomeningeal amyloidosis. At least three distinct partially folded states have been described for TTR, including the widely studied amyloidogenic state at mildly acidic pH. Here, we have used fluorescence resonance energy transfer (FRET) experiments in a monomeric variant of TTR (M-TTR) and in its W41F and W79F mutants, taking advantage of the presence of a unique, solvent-exposed, cysteine residue at position 10, that we have labelled with a coumarin derivative (DACM, acceptor), and of the two natural tryptophan residues at positions 41 and 79 (donors). Trp41 is located in an ideal position as it is one of the residues of ß-strand C, whose degree of unfolding is debated. We found that the amyloidogenic state at low pH has the same FRET efficiency as the folded state at neutral pH in both M-TTR and W79F-M-TTR, indicating an unmodified Cys10-Trp41 distance. The partially folded state populated at low denaturant concentrations also has a similar FRET efficiency, but other spectroscopic probes indicate that it is distinct from the amyloidogenic state at acidic pH. By contrast, the off-pathway state accumulating transiently during refolding has a higher FRET efficiency, indicating non-native interactions that reduce the Cys10-Trp41 spatial distance, revealing a third distinct conformational state. Overall, our results clarify a negligible degree of unfolding of ß-strand C in the formation of the amyloidogenic state and establish the concept that TTR is a highly plastic protein able to populate at least three distinct conformational states.


Subject(s)
Amyloid/chemistry , Prealbumin/chemistry , Protein Aggregates , Protein Folding , Amyloid/genetics , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer/methods , Humans , Molecular Dynamics Simulation , Point Mutation , Prealbumin/genetics , Protein Conformation , Protein Conformation, beta-Strand
14.
PLoS One ; 12(5): e0178337, 2017.
Article in English | MEDLINE | ID: mdl-28542638

ABSTRACT

Cerato-platanin (CP) is a non-catalytic, cysteine-rich protein, the first member of the cerato-platanin family. It is a single-domain protein with a double Ψ/ß barrel domain resembling the D1 domain of plant and bacterial expansins. Similarly to expansins, CP shows a cell wall-loosening activity on cellulose and can be defined as an expanisin-like protein, in spite of the missing D2 domain, normally present in plant expansins. The weakening activity shown on cellulose may facilitate the CP-host interaction, corroborating the role of CP in eliciting plant defence response. Indeed, CP is an elicitor of primary defences acting as a Pathogen-Associated Molecular Patterns (PAMP). So far, structure-function relationship study has been mainly performed on the bacterial BsEXLX1 expansin, probably due to difficulties in expressing plant expansins in heterologous systems. Here, we report a subcloning and purification method of CP in the engineered E. coli SHuffle cells, which proved to be suitable to obtain the properly folded and biologically active protein. The method also enabled the production of the mutant D77A, rationally designed to be inactive. The wild-type and the mutated CP were characterized for cellulose weakening activity and for PAMP activity (i.e. induction of Reactive Oxygen Species synthesis and phytoalexins production). Our analysis reveals that the carboxyl group of D77 is crucial for expansin-like and PAMP activities, thus permitting to establish a correlation between the ability to weaken cellulose and the capacity to induce defence responses in plants. Our results enable the structural and functional characterization of a mono-domain eukaryotic expansin and identify the essential role of a specific aspartic residue in cellulose weakening.


Subject(s)
Fungal Proteins/genetics , Amino Acid Substitution , Cellulose/metabolism , Escherichia coli/genetics , Fungal Proteins/physiology , Host-Pathogen Interactions/genetics , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Proteins/genetics , Plant Proteins/physiology
15.
J Cell Mol Med ; 20(8): 1443-56, 2016 08.
Article in English | MEDLINE | ID: mdl-26990223

ABSTRACT

The first genetic variant of ß2 -microglobulin (b2M) associated with a familial form of systemic amyloidosis has been recently described. The mutated protein, carrying a substitution of Asp at position 76 with an Asn (D76N b2M), exhibits a strongly enhanced amyloidogenic tendency to aggregate with respect to the wild-type protein. In this study, we characterized the D76N b2M aggregation path and performed an unprecedented analysis of the biochemical mechanisms underlying aggregate cytotoxicity. We showed that, contrarily to what expected from other amyloid studies, early aggregates of the mutant are not the most toxic species, despite their higher surface hydrophobicity. By modulating ganglioside GM1 content in cell membrane or synthetic lipid bilayers, we confirmed the pivotal role of this lipid as aggregate recruiter favouring their cytotoxicity. We finally observed that the aggregates bind to the cell membrane inducing an alteration of its elasticity (with possible functional unbalance and cytotoxicity) in GM1-enriched domains only, thus establishing a link between aggregate-membrane contact and cell damage.


Subject(s)
Amyloid/toxicity , Mutant Proteins/toxicity , beta 2-Microglobulin/toxicity , Biophysical Phenomena/drug effects , Calcium/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Diffusion , G(M1) Ganglioside , Humans , Lipid Bilayers/metabolism , Microscopy, Atomic Force , Protein Aggregates/drug effects , Reactive Oxygen Species/metabolism
16.
Sci Rep ; 5: 12332, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26227615

ABSTRACT

Human profilin-1 is a novel protein associated with a recently discovered form of familial amyotrophic lateral sclerosis. This urges the characterization of possible conformational states, different from the fully folded state, potentially able to initiate self-assembly. Under native conditions, profilin-1 is monomeric and possesses a well-defined secondary and tertiary structure. When incubated at low pH or with high urea concentrations, profilin-1 remains monomeric but populates unfolded states exhibiting larger hydrodynamic radius and disordered structure, as assessed by dynamic light scattering, far-UV circular dichroism and intrinsic fluorescence. Refolding from the urea-unfolded state was studied at equilibrium and in real-time using a stopped-flow apparatus. The results obtained with intrinsic fluorescence and circular dichroism indicate a single phase without significant changes of the corresponding signals before the major refolding transition. However, such a transition is preceded by a burst phase with an observed increase of ANS fluorescence, which indicates the conversion into a transiently populated collapsed state possessing solvent-exposed hydrophobic clusters. Kinetic analysis reveals that such state has a conformational stability comparable to that of the fully unfolded state. To our knowledge, profilin-1 is the first example of an amyloid-related protein where folding occurs in the absence of thermodynamically stable partially folded states.


Subject(s)
Profilins/chemistry , Protein Folding , Amyotrophic Lateral Sclerosis/metabolism , Anilino Naphthalenesulfonates/chemistry , Anilino Naphthalenesulfonates/metabolism , Circular Dichroism , Escherichia coli/genetics , Humans , Hydrogen-Ion Concentration , Kinetics , Profilins/genetics , Profilins/metabolism , Protein Conformation , Spectrometry, Fluorescence , Thermodynamics , Urea/chemistry
17.
ACS Chem Biol ; 10(11): 2553-63, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26226631

ABSTRACT

The PFN1 gene, coding for profilin-1, has recently been associated with familial amyotrophic lateral sclerosis (fALS), as three mutations, namely C71G, M114T, and G118V, have been found in patients with familial forms of the disease and another, E117G, has been proposed to be a moderate risk factor for disease onset. In this work, we have purified the four profilin-1 variants along with the wild-type protein. The resulting aggregates appear to be fibrillar, to have a weak binding to ThT, and to possess a significant amount of intermolecular ß-sheet structure. Using ThT fluorescence assays, far-UV circular dichroism, and dynamic light scattering, we found that all four variants have an aggregation propensity higher than that of the wild-type counterpart. In particular, the C71G mutation was found to induce the most dramatic change in aggregation, followed by the G118V and M114T substitutions and then the E117G mutation. Such a propensity was found not to strictly correlate with the conformational stability in this group of profilin-1 variants, determined using both urea-induced denaturation at equilibrium and folding/unfolding kinetics. However, it correlated with structural changes of the folded states, as monitored with far-UV circular dichroism, intrinsic fluorescence spectroscopy, ANS binding, acrylamide quenching, and dynamic light scattering. Overall, the results suggest that all four mutations increase the tendency of profilin-1 to aggregate and that such aggregation behavior is largely determined by the mutation-induced structural changes occurring in the folded state of the protein.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Profilins/chemistry , Profilins/genetics , Protein Aggregation, Pathological/genetics , Amyloid/chemistry , Circular Dichroism , Humans , Microscopy, Electron, Transmission , Mutation , Protein Conformation , Spectroscopy, Fourier Transform Infrared , Thermodynamics
18.
Structure ; 23(4): 745-53, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25773142

ABSTRACT

Lymphocyte function-associated antigen 1 (LFA-1) is an integrin that transmits information in two directions across the plasma membrane of leukocytes, in so-called outside-in and inside-out signaling mechanisms. To investigate the structural basis of these mechanisms, we studied the conformational space of the apo I-domain using replica-averaged metadynamics simulations in combination with nuclear magnetic resonance chemical shifts. We thus obtained a free energy landscape that reveals the existence of three conformational substates of this domain. The three substates include conformations similar to existing crystallographic structures of the low-affinity I-domain, the inactive I-domain with an allosteric antagonist inhibitor bound underneath α helix 7, and an intermediate affinity state of the I-domain. The multiple substates were validated with residual dipolar coupling measurements. These results suggest that the presence of three substates in the apo I-domain enables the precise regulation of the binding process that is essential for the physiological function of LFA-1.


Subject(s)
Lymphocyte Function-Associated Antigen-1/chemistry , Molecular Dynamics Simulation , Allosteric Regulation , Amino Acid Sequence , Molecular Sequence Data , Protein Structure, Tertiary , Signal Transduction
19.
Protein Sci ; 23(11): 1596-606, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25147050

ABSTRACT

Lymphocyte function-associated antigen-1 (LFA-1) is an integrin protein that transmits information across the plasma membrane through the so-called inside-out and outside-in signaling mechanisms. To investigate these mechanisms, we carried out an NMR analysis of the dynamics of the LFA-1 I-domain, which has enabled us to characterize the motions of this domain on a broad range of timescales. We studied first the internal motions on the nanosecond timescale by spin relaxation measurements and model-free analysis. We then extended this analysis to the millisecond timescale motions by measuring (15) N-(1) H residual dipolar couplings of the backbone amide groups. We analyzed these results in the context of the three major conformational states of the I-domain using their corresponding X-ray crystallographic structures. Our results highlight the importance of the low-frequency motions of the LFA-1 I-domain in the inactive apo-state. We found in particular that α-helix 7 is in a position in the apo-closed state that cannot be fully described by any of the existing X-ray structures, as it appears to be in dynamic exchange between different conformations. This type of motion seems to represent an inherent property of the LFA-1 I-domain and might be relevant for controlling the access to the allosteric binding pocket, as well as for the downward displacement of α-helix 7 that is required for the activation of LFA-1.


Subject(s)
Lymphocyte Function-Associated Antigen-1/chemistry , Lymphocyte Function-Associated Antigen-1/metabolism , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
20.
Biochemistry ; 53(27): 4381-92, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24945718

ABSTRACT

Aggregation of transthyretin (TTR) is known to be linked to the development of systemic and localized amyloidoses. It also appears that TTR exerts a protective role against aggregation of the Aß peptide, a process linked to Alzheimer's disease. In vitro, both processes correlate with the ability of TTR to populate a monomeric state, yet a complete description of the possible conformational states populated by monomeric TTR in vitro at physiological pH is missing. Using an array of biophysical methods and kinetic tests, we show that once monomers of transthyretin are released from the tetramer, equilibrium is established between a set of conformational states possessing different degrees of disorder. A molten globular state appears in equilibrium with the fully folded monomer, whereas an off-pathway species accumulates transiently during refolding of TTR. These two conformational ensembles are distinct in terms of structure, kinetics, and their pathways of formation. Further subpopulations of the protein fold differently because of the occurrence of proline isomerism. The identification of conformational states unrevealed in previous studies opens the way for further characterization of the amyloidogenicity of TTR and its protective role in Alzheimer's disease.


Subject(s)
Protein Folding , Transferrin/chemistry , Humans , Isomerism , Kinetics , Proline/chemistry , Protein Conformation , Protein Denaturation , Protein Multimerization , Protein Unfolding
SELECTION OF CITATIONS
SEARCH DETAIL
...