Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-438579

ABSTRACT

SARS-CoV-2 is the novel coronavirus that is the causative agent of COVID-19, a sometimes-lethal respiratory infection responsible for a world-wide pandemic. The envelope (E) protein, one of four structural proteins encoded in the viral genome, is a 75-residue integral membrane protein whose transmembrane domain exhibits ion channel activity and whose cytoplasmic domain participates in protein-protein interactions. These activities contribute to several aspects of the viral replication-cycle, including virion assembly, budding, release, and pathogenesis. Here, we describe the structure and dynamics of full-length SARS-CoV-2 E protein in hexadecylphosphocholine micelles by NMR spectroscopy. We also characterized its interactions with four putative ion channel inhibitors. The chemical shift index and dipolar wave plots establish that E protein consists of a long transmembrane helix (residues 8-43) and a short cytoplasmic helix (residues 53-60) connected by a complex linker that exhibits some internal mobility. The conformations of the N-terminal transmembrane domain and the C-terminal cytoplasmic domain are unaffected by truncation from the intact protein. The chemical shift perturbations of E protein spectra induced by the addition of the inhibitors demonstrate that the N-terminal region (residues 6-18) is the principal binding site. The binding affinity of the inhibitors to E protein in micelles correlates with their antiviral potency in Vero E6 cells: HMA {approx} EIPA > DMA >> Amiloride, suggesting that bulky hydrophobic groups in the 5 position of the amiloride pyrazine ring play essential roles in binding to E protein and in antiviral activity. An N15A mutation increased the production of virus-like particles, induced significant chemical shift changes from residues in the inhibitor binding site, and abolished HMA binding, suggesting that Asn15 plays a key role in maintaining the protein conformation near the binding site. These studies provide the foundation for complete structure determination of E protein and for structure-based drug discovery targeting this protein. Author SummaryThe novel coronavirus SARS-CoV-2, the causative agent of the world-wide pandemic of COVID-19, has become one of the greatest threats to human health. While rapid progress has been made in the development of vaccines, drug discovery has lagged, partly due to the lack of atomic-resolution structures of the free and drug-bound forms of the viral proteins. The SARS-CoV-2 envelope (E) protein, with its multiple activities that contribute to viral replication, is widely regarded as a potential target for COVID-19 treatment. As structural information is essential for drug discovery, we established an efficient sample preparation system for biochemical and structural studies of intact full-length SARS-CoV-2 E protein and characterized its structure and dynamics. We also characterized the interactions of amilorides with specific E protein residues and correlated this with their antiviral activity during viral replication. The binding affinity of the amilorides to E protein correlated with their antiviral potency, suggesting that E protein is indeed the likely target of their antiviral activity. We found that residue asparagine15 plays an important role in maintaining the conformation of the amiloride binding site, providing molecular guidance for the design of inhibitors targeting E protein.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-276923

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) maintains cardiovascular and renal homeostasis but also serves as the entry receptor for the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), the causal agent of novel coronavirus disease 2019 (COVID-19)1. COVID-19 disease severity, while highly variable, is typically lower in pediatric patients than adults (particularly the elderly), but increased rates of hospitalizations requiring intensive care are observed in infants than in older children. The reasons for these differences are unknown. To detect potential age-based correlates of disease severity, we measured ACE2 protein expression at the single cell level in human lung tissue specimens from over 100 donors from [~]4 months to 75 years of age. We found that expression of ACE2 in distal lung epithelial cells generally increases with advancing age but exhibits extreme intra- and inter-individual heterogeneity. Notably, we also detected ACE2 expression on neonatal airway epithelial cells and within the lung parenchyma. Similar patterns were found at the transcript level: ACE2 mRNA is expressed in the lung and trachea shortly after birth, downregulated during childhood, and again expressed at high levels in late adulthood in alveolar epithelial cells. Furthermore, we find that apoptosis, which is a natural host defense system against viral infection, is also dynamically regulated during lung maturation, resulting in periods of heightened apoptotic priming and dependence on pro-survival BCL-2 family proteins including MCL-1. Infection of human lung cells with SARS-CoV-2 triggers an unfolded protein stress response and upregulation of the endogenous MCL-1 inhibitor Noxa; in juveniles, MCL-1 inhibition is sufficient to trigger apoptosis in lung epithelial cells - this may limit virion production and inflammatory signaling. Overall, we identify strong and distinct correlates of COVID-19 disease severity across lifespan and advance our understanding of the regulation of ACE2 and cell death programs in the mammalian lung. Furthermore, our work provides the framework for potential translation of apoptosis modulating drugs as novel treatments for COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...