Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-21048899

ABSTRACT

Neural activity of behaving animals, especially in the prefrontal cortex, is highly heterogeneous, with selective responses to diverse aspects of the executed task. We propose a general model of recurrent neural networks that perform complex rule-based tasks, and we show that the diversity of neuronal responses plays a fundamental role when the behavioral responses are context-dependent. Specifically, we found that when the inner mental states encoding the task rules are represented by stable patterns of neural activity (attractors of the neural dynamics), the neurons must be selective for combinations of sensory stimuli and inner mental states. Such mixed selectivity is easily obtained by neurons that connect with random synaptic strengths both to the recurrent network and to neurons encoding sensory inputs. The number of randomly connected neurons needed to solve a task is on average only three times as large as the number of neurons needed in a network designed ad hoc. Moreover, the number of needed neurons grows only linearly with the number of task-relevant events and mental states, provided that each neuron responds to a large proportion of events (dense/distributed coding). A biologically realistic implementation of the model captures several aspects of the activity recorded from monkeys performing context-dependent tasks. Our findings explain the importance of the diversity of neural responses and provide us with simple and general principles for designing attractor neural networks that perform complex computation.

2.
Neuroimage ; 52(3): 833-47, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20100580

ABSTRACT

Complex tasks often require the memory of recent events, the knowledge about the context in which they occur, and the goals we intend to reach. All this information is stored in our mental states. Given a set of mental states, reinforcement learning (RL) algorithms predict the optimal policy that maximizes future reward. RL algorithms assign a value to each already-known state so that discovering the optimal policy reduces to selecting the action leading to the state with the highest value. But how does the brain create representations of these mental states in the first place? We propose a mechanism for the creation of mental states that contain information about the temporal statistics of the events in a particular context. We suggest that the mental states are represented by stable patterns of reverberating activity, which are attractors of the neural dynamics. These representations are built from neurons that are selective to specific combinations of external events (e.g. sensory stimuli) and pre-existent mental states. Consistent with this notion, we find that neurons in the amygdala and in orbitofrontal cortex (OFC) often exhibit this form of mixed selectivity. We propose that activating different mixed selectivity neurons in a fixed temporal order modifies synaptic connections so that conjunctions of events and mental states merge into a single pattern of reverberating activity. This process corresponds to the birth of a new, different mental state that encodes a different temporal context. The concretion process depends on temporal contiguity, i.e. on the probability that a combination of an event and mental states follows or precedes the events and states that define a certain context. The information contained in the context thereby allows an animal to assign unambiguously a value to the events that initially appeared in different situations with different meanings.


Subject(s)
Brain/physiology , Cognition/physiology , Models, Neurological , Neural Networks, Computer , Neurons/physiology , Animals , Humans , Learning/physiology , Reinforcement, Psychology
3.
Article in English | MEDLINE | ID: mdl-18946529

ABSTRACT

Theoretical studies have shown that memories last longer if the neural representations are sparse, that is, when each neuron is selective for a small fraction of the events creating the memories. Sparseness reduces both the interference between stored memories and the number of synaptic modifications which are necessary for memory storage. Paradoxically, in cortical areas like the inferotemporal cortex, where presumably memory lifetimes are longer than in the medial temporal lobe, neural representations are less sparse. We resolve this paradox by analyzing the effects of sparseness on complex models of synaptic dynamics in which there are metaplastic states with different degrees of plasticity. For these models, memory retention in a large number of synapses across multiple neurons is significantly more efficient in case of many metaplastic states, that is, for an elevated degree of complexity. In other words, larger brain regions allow to retain memories for significantly longer times only if the synaptic complexity increases with the total number of synapses. However, the initial memory trace, the one experienced immediately after memory storage, becomes weaker both when the number of metaplastic states increases and when the neural representations become sparser. Such a memory trace must be above a given threshold in order to permit every single neuron to retrieve the information stored in its synapses. As a consequence, if the initial memory trace is reduced because of the increased synaptic complexity, then the neural representations must be less sparse. We conclude that long memory lifetimes allowed by a larger number of synapses require more complex synapses, and hence, less sparse representations, which is what is observed in the brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...