Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(8): 9921-9934, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33159682

ABSTRACT

The keratin-degrading bacterium Actinomadura viridilutea DZ50 secretes a keratinase (KERDZ) with potential industrial interest. Here, the kerDZ gene was extracellularly expressed in Escherichia coli BL21(DE3)pLysS using pTrc99A vector. The recombinant enzyme (rKERDZ) was purified and biochemically characterized. Results showed that the native and recombinant keratinases have similar biochemical characteristics. The conventional dehairing with lime and sodium sulfide degrades the hair to the extent that it cannot be recovered. Thus, these chemical processes become a major contributor to wastewater problem and create a lot of environmental concern. The complete dehairing was achieved with 2000 U/mL rKERDZ for 10 h at 40 °C. In fact, keratinase assisted dehairing entirely degraded chicken feather (45 mg) and removed wool/hair from rabbit, sheep, goat, or bovine' hides (1.6 kg) while preserving the collagen structure. The enzymatic process is the eco-friendly option that reduces biological (BOD) (50%) and chemical (COD) oxygen demands (60%) in leather processing. Consequently, the enzymatic hair removal process could solve the problem of post-treatments encountering the traditional leather processing. The enzymatic (rKERDZ) dehaired leather was analyzed by scanning electron microscopic (SEM) studies, which revealed similar fiber orientation and compactness compared with control sample. Those properties support that the rKERDZ enzyme-mediated process is greener to some extent than the traditional one.


Subject(s)
Actinomycetales , Feathers , Actinomadura , Animals , Cattle , Peptide Hydrolases , Rabbits , Sheep
2.
Extremophiles ; 23(6): 687-706, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31407121

ABSTRACT

A thermostable extracellular alkaline protease (called SAPA) was produced (4600 U/mL) by Anoxybacillus kamchatkensis M1V, purified to homogeneity, and biochemically characterized. SAPA is a monomer with a molecular mass of 28 kDa estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Native-PAGE, casein-zymography, and size exclusion using high performance liquid chromatography (HPLC). The sequence of its NH2-terminal amino-acid residues showed high homology with those of Bacillus proteases. The SAPA irreversible inhibition by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine proteases family. Optimal activity of SAPA was at pH 11 and 70 °C. The sapA gene was cloned and expressed in the extracellular fraction of E. coli. The highest sequence identity value (95%) of SAPA was obtained with peptidase S8 from Bacillus subtilis WT 168, but with 16 amino-acids of difference. The biochemical characteristics of the purified recombinant extracellular enzyme (called rSAPA) were analogous to those of native SAPA. Interestingly, rSAPA exhibit a degree of hydrolysis that were 1.24 and 2.6 than SAPB from Bacillus pumilus CBS and subtilisin A from Bacillus licheniformis, respectively. Furthermore, rSAPA showed a high detergent compatibility and an outstanding stain removal capacity compared to commercial enzymes: savinase™ 16L, type EX and alcalase™ Ultra 2.5 L.


Subject(s)
Anoxybacillus/enzymology , Bacterial Proteins/chemistry , Detergents/chemistry , Hot Temperature , Peptide Hydrolases/chemistry , Anoxybacillus/genetics , Bacterial Proteins/genetics , Enzyme Stability , Peptide Hydrolases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
3.
BMC Biotechnol ; 19(1): 43, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31262286

ABSTRACT

BACKGROUND: Proteases are hydrolytic enzymes that catalyze peptide linkage cleavage reactions at the level of proteins and peptides with different degrees of specificity. This group draws the attention of industry. More than one protease in three is a serine protease. Classically, they are active at neutral to alkaline pH. The serine proteases are researched for industrial uses, especially detergents. They are the most commercially available enzyme group in the world market. Overall, fungi produced extracellular proteases, easily separated from mycelium by filtration. RESULTS: A new basidiomycete fungus CTM10057, a hyperproducer of a novel protease (10,500 U/mL), was identified as Pleurotus sajor-caju (oyster mushroom). The enzyme, called SPPS, was purified to homogeneity by heat-treatment (80 °C for 20 min) followed by ammonium sulfate precipitation (35-55%)-dialysis, then UNO Q-6 FPLC ion-exchange chromatography and finally HPLC-ZORBAX PSM 300 HPSEC gel filtration chromatography, and submitted to biochemical characterization assays. The molecular mass was estimated to be 65 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Native-PAGE, casein-zymography, and size exclusion by HPLC. A high homology with mushroom proteases was displayed by the first 26 amino-acid residues of the NH2-terminal aminoacid sequence. Phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP) strongly inhibit SPPS, revealing that it is a member of the serine-proteases family. The pH and temperature optima were 9.5 and 70 °C, respectively. Interestingly, SPPS possesses the most elevated hydrolysis level and catalytic efficiency in comparison with SPTC, Flavourzyme® 500 L, and Thermolysin type X proteases. More remarkably, a high tolerance towards organic solvent tolerance was exhibited by SPPS, together with considerable detergent stability compared to the commercial proteases Thermolysin type X and Flavourzyme® 500 L, respectively. CONCLUSIONS: This proves the excellent proprieties characterizing SPPS, making it a potential candidate for industrial applications especially detergent formulations.


Subject(s)
Fungal Proteins/metabolism , Hot Temperature , Pleurotus/enzymology , Serine Proteases/metabolism , Detergents/chemistry , Enzyme Stability , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Hydrogen-Ion Concentration , Hydrolysis , Industrial Microbiology/methods , Kinetics , Molecular Weight , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Substrate Specificity
4.
Int J Biol Macromol ; 119: 1002-1016, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30081129

ABSTRACT

A new ascomycete fungus X5, a hyperproducer (9000 U/mL) of a serine alkaline protease (SAPTEX) was identified as Penicillium chrysogenum. The experimental purification protocol comprises three steps: heat treatment (10 min at 80 °C) followed by an ammonium sulfate precipitation (30-50%)-dialysis, and a UNO Q-12 anion exchange chromatography using the FPLC system. The chemical characterizations performed include physico-chemical determination and spectroscopic analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 43,074.11 Da. The 25 residue NH2-terminal sequence of the enzyme showed high homology with Penicillium proteases. The optimum pH and temperature values for protease activity were pH 10 and 80 °C, respectively. Compared to other proteases (SPTC; Flavourzyme® 500 L; Proteinase, type XXIII; Proteinase K; and Alcalase® 2.4 L), SAPTEX has the highest catalytic efficacy, hydrolysis degree, and a powerful stability toward some commercial detergents. According to morphological, physico-chemical [scanning electron microscopy (SEM), energy dispersive X-Ray analysis (EDX), and FTIR-Fourier transform infrared spectroscopy], and mechanical evaluation, SAPTEX has no destructive impact on fibers after the enzyme treatment and a very slight effect on textile support. Obtained results suggested that SAPTEX may be considered as a potential candidate as a protein stain removal product for textile supports.


Subject(s)
Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Endopeptidases/biosynthesis , Endopeptidases/chemistry , Penicillium chrysogenum/metabolism , Serine Proteases/biosynthesis , Serine Proteases/chemistry , Textiles , Chemical Phenomena , Enzyme Activation , Enzyme Stability , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Mechanical Phenomena , Molecular Weight , Penicillium chrysogenum/enzymology , Proteolysis , Serine Proteases/isolation & purification , Temperature
5.
Int J Biol Macromol ; 92: 299-315, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27387016

ABSTRACT

A new extracellular thermostable keratinolytic protease, designated KERDZ, was purified and characterized from a thermophilic actinomycetes Actinomadura viridilutea DZ50 isolated from Algerian fishing port. The isolate exhibited high keratinase production when grown in chicken-feather meal media (18,000U/ml) after 96-h of incubation at 45°C. The enzyme was purified by ammonium sulfate precipitation (35-55%)-dialysis and heat treatment (30min at 75°C) followed by UNO S-1 FPLC cation exchange chromatography and size exclusion HPLC column. The biochemical characterizations carried on include physico-chemical determination and spectroscopic analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 19536.10-Da. The sequence of the 25 N-terminal residues of KERDZ showed high homology with those of actinomycetes keratinases. Optimal activity was achieved at pH 11 and 80°C. KERDZ was completely inhibited by PMSF and DFP suggested its belonging to the serine keratinase family. KERDZ displayed higher levels of hydrolysis and catalytic efficiency than bacterial keratinases (KERAK-29, Actinase E, and KERAB) and subtilisins (subtilisin Carlsberg and subtilisin Novo). The kerDZ gene encoding KERDZ was isolated and its DNA sequence was determined. These properties make KERDZ a potential, promising and eco-friendly alternative to the conventional chemicals used for industrial applications.


Subject(s)
Actinomycetales/enzymology , Peptide Hydrolases/metabolism , Amino Acid Sequence , Base Sequence , Chromatography, High Pressure Liquid , Cloning, Molecular , Detergents/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Hydrolysis , Ions , Kinetics , Metals/pharmacology , Molecular Weight , Peptide Hydrolases/chemistry , Peptide Hydrolases/isolation & purification , Phylogeny , Proteolysis/drug effects , RNA, Ribosomal, 16S/genetics , Sequence Alignment , Structural Homology, Protein , Substrate Specificity/drug effects , Subtilisin/metabolism , Temperature
6.
Int J Biol Macromol ; 91: 961-72, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27296442

ABSTRACT

A protease-producing fungus was isolated from an alkaline wastewater of chemical industries and identified as Trametes cingulata strain CTM10101 on the basis of the ITS rDNA gene-sequencing. It was observed that the fungus strongly produce extracellular protease grown at 30°C in potato-dextrose-broth (PDB) optimized media (13500U/ml). The pure serine protease isolated by Trametes cingulata (designated SPTC) was purified by ammonium sulfate precipitation-dialysis followed by heat-treatment and UNO S-1 FPLC cation-exchange chromatography. The chemical characterization carried on include phisico-chemical determination and spectroscopie analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 31405.16-Da. The enzyme had an NH2-terminal sequence of ALTTQTEAPWALGTVSHKGQAST, thus sharing high homology with those of fungal-proteases. The optimum pH and temperature values of its proteolytic activity were pH 9 and 60°C, respectively, and its half-life times at 60 and 70°C were 9 and 5-h, respectively. It was completely inhibited by PMSF and DFP, which strongly suggested its belonging to the serine protease family. Compared to Flavourzyme(®)500L from Aspergillus oryzae and Thermolysin typeX from Geobacillus stearothermophilus, SPTC displayed higher levels of hydrolysis, substrate specificity, and catalytic efficiency as well as elevated organic solvent tolerance and considerable detergent stability. Finally, SPTC could potentially be used in peptide synthesis and detergent formulations.


Subject(s)
Bacterial Proteins/isolation & purification , Detergents/pharmacology , Endopeptidases/isolation & purification , Organic Chemicals/pharmacology , Serine Proteases/isolation & purification , Solvents/pharmacology , Trametes/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Blood Stains , Endopeptidases/chemistry , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Hydrolysis , Ions , Kinetics , Metals/pharmacology , Molecular Weight , Phylogeny , Protease Inhibitors/pharmacology , Serine Proteases/chemistry , Substrate Specificity/drug effects , Temperature , Textiles
7.
Int J Biol Macromol ; 79: 871-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26056991

ABSTRACT

An alkaline proteinase (STAP) was produced from strain TN650 isolated from a Tunisian off-shore oil field and assigned as Streptomyces koyangensis strain TN650 based on physiological and biochemical properties and 16S rRNA gene sequencing. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 45125.17-Da. The enzyme had an NH2-terminal sequence of TQSNPPSWGLDRIDQTTAFTKACSIKY, thus sharing high homology with those of Streptomyces proteases. The results showed that this protease was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), diiodopropyl fluorophosphates (DFP), and partially inhibited by 5,5-dithio-bis-(2-nitro benzoic acid) (DTNB), which strongly suggested its belonging to the serine thiol protease family. Using casein as a substrate, the optimum pH and temperature values for protease activity were pH 10 and 70 °C, respectively. The protease was stable at pH 7-10 and 30-60 °C for 24 h. STAP exhibited high catalytic efficiency, significant detergent stability, and elevated organic solvent resistance compared to the SG-XIV proteases from S. griseus and KERAB from Streptomyces sp. AB1. The stap gene encoding STAP was isolated, and its DNA sequence was determined. These properties make STAP a potential candidate for future application in detergent formulations and non-aqueous peptide biocatalysis.


Subject(s)
Bacterial Proteins/chemistry , Endopeptidases/chemistry , Enzyme Stability , Serine Proteases/chemistry , Streptomyces/enzymology , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Detergents/chemistry , Endopeptidases/isolation & purification , Endopeptidases/metabolism , Hydrolysis , Kinetics , RNA, Ribosomal, 16S/genetics , Serine Proteases/isolation & purification , Serine Proteases/metabolism , Solvents/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity , Temperature
8.
Int J Biol Macromol ; 79: 952-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26086793

ABSTRACT

The present paper reports on the purification and characterization of an extracellular keratinase (KERQ7) newly purified from Bacillus tequilensis Q7. Pure protein was obtained after ammonium sulfate fractionation (30-60%), followed by Mono S Sepharose cation-exchange chromatography. MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 28,355.07-Da. The sequence of the 21 N-terminal residues of KERQ7 showed high homology with those of Bacillus keratinases. Optimal activity was achieved at pH 7 and 30°C. KERQ7 was completely inhibited by PMSF and DFP, which suggests that it belongs to the serine keratinase family. KERQ7 displayed higher levels of hydrolysis and catalytic efficiency than Basozym(®) CS 10, Koropon(®) SC 5K, and Pyrase(®) 250 MP. The kerQ7 gene encoding KERQ7 was cloned, sequenced, and expressed in Escherichia coli BL21(DE3)pLysS. The biochemical properties of the extracellular purified recombinant enzyme (rKERQ7) were similar to those of native KERQ7. The deduced amino acid sequence showed strong homology with other Bacillus keratinases. The highest sequence identity value (97%) was obtained with KERUS from Brevibacillus brevis US575, with only 7 aa of difference. These properties make KERQ7 a potential promising and eco-friendly enzymatically enhanced process for animal hide bating in the leather processing industry.


Subject(s)
Bacillus/enzymology , Peptide Hydrolases/chemistry , Peptide Hydrolases/isolation & purification , Amino Acid Sequence/genetics , Cloning, Molecular , Enzyme Stability , Peptide Hydrolases/genetics , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...