Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Transplant Cell Ther ; 30(3): 332.e1-332.e15, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38081414

ABSTRACT

Therapeutic drug monitoring (TDM) of busulfan (Bu) is well-established in pediatric hematopoietic stem cell transplantation (HSCT), but its use in adults is limited due to a lack of clear recommendations and scarcity of evidence regarding its utility. GSTA1 promoter variants are reported to affect Bu clearance in both adults and pediatric patients. This study aimed to evaluate the value of preemptive genotyping GSTA1 and body composition (obesity) in individualizing Bu dosing in adults, through pharmacokinetic (PK) modeling and simulations. A population pharmacokinetic (PopPK) model was developed and validated with data from 60 adults who underwent HSCT. Simulations assessed different dosing scenarios based on body size metrics and GSTA1 genotypes. Due to the limited number of obese patients in the cohort, the effect of obesity on Bu pharmacokinetics (PK) was evaluated in silico using a physiologically-based pharmacokinetic (PBPK) model and relevant virtual populations from Simcyp software. Patients with at least 1 GSTA1*B haplotype had 17% lower clearance on average. PopPK simulations indicated that adjusting doses based on genotype increased the probability of achieving the target exposure (3.7 to 5.5 mg.h/L) from 53% to 60 % in GSTA1*A homozygous patients, and from 50% to 61% in *B carriers. Still, Approximately 40% of patients would not achieve this therapeutic window without TDM. A 2-sample optimal design was validated for routine model-based Bu first dose AUC0-∞ estimation, and the model was implemented in the Tucuxi user-friendly TDM software. PBPK simulations confirmed body surface area-based doses of 29 to 31 mg/m2/6h as the most appropriate, regardless of obesity status. This study emphasizes the importance of individualized Bu dosing strategies in adults to achieve therapeutic targets. Preemptive genotyping alone may not have a significant clinical impact, and routine TDM may be necessary for optimal transplantation outcomes.


Subject(s)
Busulfan , Hematopoietic Stem Cell Transplantation , Adult , Humans , Child , Busulfan/therapeutic use , Pharmacogenetics , Drug Monitoring , Obesity
2.
Rev Med Suisse ; 19(815): 380-387, 2023 Feb 22.
Article in French | MEDLINE | ID: mdl-36815329

ABSTRACT

Despite the progress in cure rates for pediatric cancers, several challenges remain, such as the management of diseases with poor prognosis. The efficacy of intensified chemotherapies is also accompanied by increased risks of severe acute and chronic toxicities. Thus, therapies specifically targeting tumor cells, or inhibiting oncogenic molecular aberrations, could provide more effective and less toxic treatments for pediatric cancers. Personalization of chemotherapies through pharmacogenetics and precision dosing could also improve the efficacy and toxicity of chemotherapies. In this review, we describe precision medicine strategies implemented or undergoing clinical evaluation in the treatment of pediatric cancers.


Malgré les progrès sur les taux de guérison des cancers pédiatriques, plusieurs défis restent à relever, comme la prise en charge des maladies à mauvais pronostic. L'efficacité des chimiothérapies intensives s'accompagne aussi de risques accrus de toxicités aiguës et chroniques graves. Ainsi, les thérapies ciblant spécifiquement les cellules tumorales, ou inhibant les aberrations moléculaires oncogéniques, pourraient offrir des traitements plus efficaces et moins toxiques pour les cancers pédiatriques. La personnalisation des chimiothérapies grâce à la pharmacogénétique et au dosage de précision pourrait également améliorer l'efficacité et la toxicité des chimiothérapies. Dans cet article de revue, nous décrivons les stratégies de médecine de précision implémentées ou en cours d'évaluation clinique dans le traitement des cancers pédiatriques.


Subject(s)
Neoplasms , Precision Medicine , Child , Humans , Neoplasms/drug therapy , Pharmacogenetics , Molecular Targeted Therapy
3.
Front Pediatr ; 9: 775485, 2021.
Article in English | MEDLINE | ID: mdl-34956984

ABSTRACT

Total-body irradiation (TBI) based conditioning prior to allogeneic hematopoietic stem cell transplantation (HSCT) is generally regarded as the gold-standard for children >4 years of age with acute lymphoblastic leukaemia (ALL). Retrospective studies in the 1990's suggested better survival with irradiation, confirmed in a small randomised, prospective study in the early 2000's. Most recently, this was reconfirmed by the early results of the large, randomised, international, phase III FORUM study published in 2020. But we know survivors will suffer a multitude of long-term sequelae after TBI, including second malignancies, neurocognitive, endocrine and cardiometabolic effects. The drive to avoid TBI directs us to continue optimising irradiation-free, myeloablative conditioning. In chemotherapy-based conditioning, the dominant myeloablative effect is provided by the alkylating agents, most commonly busulfan or treosulfan. Busulfan with cyclophosphamide is a long-established alternative to TBI-based conditioning in ALL patients. Substituting fludarabine for cyclophosphamide reduces toxicity, but may not be as effective, prompting the addition of a third agent, such as thiotepa, melphalan, and now clofarabine. For busulfan, it's wide pharmacokinetic (PK) variability and narrow therapeutic window is well-known, with widespread use of therapeutic drug monitoring (TDM) to individualise dosing and control the cumulative busulfan exposure. The development of first-dose selection algorithms has helped achieve early, accurate busulfan levels within the targeted therapeutic window. In the future, predictive genetic variants, associated with differing busulfan exposures and toxicities, could be employed to further tailor individualised busulfan-based conditioning for ALL patients. Treosulfan-based conditioning leads to comparable outcomes to busulfan-based conditioning in paediatric ALL, without the need for TDM to date. Future PK evaluation and modelling may optimise therapy and improve outcome. More recently, the addition of clofarabine to busulfan/fludarabine has shown encouraging results when compared to TBI-based regimens. The combination shows activity in ALL as well as AML and deserves further evaluation. Like busulfan, optimization of chemotherapy conditioning may be enhanced by understanding not just the PK of clofarabine, fludarabine, treosulfan and other agents, but also the pharmacodynamics and pharmacogenetics, ideally in the context of a single disease such as ALL.

4.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 1043-1056, 2021 09.
Article in English | MEDLINE | ID: mdl-34453497

ABSTRACT

Busulfan (Bu) is a common component of conditioning regimens before hematopoietic stem cell transplantation (HSCT) and is known for high interpatient pharmacokinetic (PK) variability. This study aimed to develop and externally validate a multicentric, population PK (PopPK) model for intravenous Bu in pediatric patients before HSCT to first study the influence of glutathione-s-transferase A1 (GSTA1) polymorphisms on Bu's PK in a large multicentric pediatric population while accounting for fludarabine (Flu) coadministration and, second, to establish an individualized, model-based, first-dose recommendation for intravenous Bu that can be widely used in pediatric patients. The model was built using data from 302 patients from five transplantation centers who received a Bu-based conditioning regimen. External model validation used data from 100 patients. The relationship between body weight and Bu clearance (CL) was best described by an age-dependent allometric scaling of a body weight model. A stepwise covariate analysis identified Day 1 of Bu conditioning, GSTA1 metabolic groups based on GSTA1 polymorphisms, and Flu coadministration as significant covariates influencing Bu CL. The final model adequately predicted Bu first-dose CL in the external cohort, with 81% of predicted area under the curves within the therapeutic window. The final model showed minimal bias (mean prediction error, -0.5%; 95% confidence interval [CI], -3.1% to 2.0%) and acceptable precision (mean absolute prediction error percentage, 18.7%; 95% CI, 17.0%-20.5%) in Bu CL prediction for dosing. This multicentric PopPK study confirmed the influence of GSTA1 polymorphisms and Flu coadministration on Bu CL. The developed model accurately predicted Bu CL and first doses in an external cohort of pediatric patients.


Subject(s)
Busulfan/administration & dosage , Glutathione Transferase/genetics , Hematopoietic Stem Cell Transplantation/methods , Models, Biological , Administration, Intravenous , Adolescent , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/pharmacokinetics , Area Under Curve , Busulfan/pharmacokinetics , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Humans , Infant , Male , Polymorphism, Genetic , Precision Medicine , Transplantation Conditioning , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives , Young Adult
5.
Drug Metab Lett ; 14(3): 163-165, 2021.
Article in English | MEDLINE | ID: mdl-34984966

ABSTRACT

BACKGROUND: Glutathione S-transferases (GSTs) are phase II metabolic enzymes crucial for the metabolism of electrophilic drugs. Additionally, several GST isoforms are involved in protein- protein interaction with mitogen-activated protein kinases (MAPKs), modulating apoptosis pathways. METHODS: To assess the potential change of enzymatic activity, we performed a GST enzyme assay with human recombinant GSTM1 in the presence and absence of MAPK8. Recently, GSTM1 has been demonstrated to interact with MAPK8 both in silico and in vitro. The binding interface predicted in silico comprised amino acid residues present on the surface of the protein and a few were deep in the active site of the protein. RESULTS: The experiment demonstrated that the GSTM1 activity was conserved even in the presence of MAPK8 in the assay. CONCLUSION: The possible alteration in the activity of MAPK8 in this interaction needs to be evaluated in further experiments.


Subject(s)
Glutathione Transferase , Mitogen-Activated Protein Kinase 8 , Amino Acids , Humans , Protein Isoforms
SELECTION OF CITATIONS
SEARCH DETAIL
...