Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Model ; 8(1): 228-239, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36776734

ABSTRACT

Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the time when the first case was reported in the country to now remains unclear. This study aimed to estimate and model the actual trend in the number of COVID -19 new infections in Cameroon from March 05, 2020 to May 31, 2021 based on an observed disaggregated dataset. We used a large disaggregated dataset, and multilevel regression and poststratification model was applied prospectively for COVID-19 cases trend estimation in Cameroon from March 05, 2020 to May 31, 2021. Subsequently, seasonal autoregressive integrated moving average (SARIMA) modeling was used for forecasting purposes. Based on the prospective MRP modeling findings, a total of about 7450935 (30%) of COVID-19 cases was estimated from March 05, 2020 to May 31, 2021 in Cameroon. Generally, the reported number of COVID-19 infection cases in Cameroon during this period underestimated the estimated actual number by about 94 times. The forecasting indicated a succession of two waves of the outbreak in the next two years following May 31, 2021. If no action is taken, there could be many waves of the outbreak in the future. To avoid such situations which could be a threat to global health, public health authorities should effectively monitor compliance with preventive measures in the population and implement strategies to increase vaccination coverage in the population.

2.
Front Public Health ; 10: 1039925, 2022.
Article in English | MEDLINE | ID: mdl-36518575

ABSTRACT

The aim of this study is to make a comparative study on the reproduction number R 0 computed at the beginning of each wave for African countries and to understand the reasons for the disparities between them. The study covers the two first years of the COVID-19 pandemic and for 30 African countries. It links pandemic variables, reproduction number R 0, demographic variable, median age of the population, economic variables, GDP and CHE per capita, and climatic variables, mean temperature at the beginning of each waves. The results show that the diffusion of COVID-19 in Africa was heterogeneous even between geographical proximal countries. The difference of the basic reproduction number R 0 values is very large between countries and is significantly correlated with economic and climatic variables GDP and temperature and to a less extent with the mean age of the population.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , SARS-CoV-2 , Africa/epidemiology , African People
3.
BMC Infect Dis ; 20(1): 627, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32842988

ABSTRACT

BACKGROUND: The epidemiological pattern of hepatitis A infection has shown dynamic changes in many parts of the world due to improved socio-economic conditions and the accumulation of seronegative subjects, which leads to possible outbreaks and increased morbidity rate. In Tunisia, the epidemiological status of hepatits A virus is currently unknown. However, over the past years higher numbers of symptomatic hepatitis A virus infection in school attendants and several outbreaks were reported to the Ministry of Health, especially from regions with the lowest socio-economic levels in the country. The aim of this study was to investigate the current seroprevalence of hepatitis A virus antibodies in central-west Tunisia and assess the impact of hepatitis A virus vaccination on hepatitis A epidemiology. METHODS: Serum samples from 1379 individuals, aged 5-75 years, were screened for hepatitis A virus antibodies. Adjusted seroprevalence, incidence and force of infection parameters were estimated by a linear age structured SEIR (Susceptible-Exposed-Infectious-Recovered) compartmental model. A vaccine model was then constructed to assess the impact on hepatitis A virus epidemiology of 3 scenarios of vaccination strategies: one dose at 12-months of age, one dose at 6-years and one dose at 12-months and another at 6-years of age during 6 years. RESULTS: A rapid increase in anti-hepatitis A virus seroprevalence was noted during infancy and adolescence: 47% of subjects under 10-years-old are infected; the prevalence increases to 77% at 15-years and reaches 97% in subjects aged 30-years. The force of infection is highest between 10 and 30-years of age and the incidence declines with increasing age. The vaccine model showed that the 3-scenarios lead to a significant reduction of the fraction of susceptibles. The two doses scenario gives the best results. Single-dose vaccination at 6-years of age provides more rapid decrease of disease burden in school-aged children, as compared to single-dose vaccination at 12-months, but keeps with a non-negligible fraction of susceptibles among children < 6-years. CONCLUSIONS: Our study confirms the epidemiological switch from high to intermediate endemicity of hepatitis A virus in Tunisia and provides models that may help undertake best decisions in terms of vaccinations strategies.


Subject(s)
Hepatitis A virus/immunology , Hepatitis A/epidemiology , Hepatitis A/transmission , Models, Theoretical , Vaccination/methods , Adolescent , Adult , Age Factors , Aged , Child , Child, Preschool , Female , Hepatitis A/blood , Hepatitis A/prevention & control , Hepatitis A Antibodies/blood , Humans , Incidence , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , Tunisia/epidemiology , Young Adult
4.
J Theor Biol ; 449: 53-59, 2018 07 14.
Article in English | MEDLINE | ID: mdl-29655869

ABSTRACT

Both empirical and theoretical studies, have dealt with the question how to best optimize reproductive fitness for hermaphrodites, using models such as game theory or complicated energetic costs and benefits of mating displays. However, hermaphrodites exhibit a broad spectrum of sexual behaviors like simultaneous, sequential or lifetime gonochorist that cannot be explained using a unique formalism. A possible explanation of this diversity relies on the way these species maximize their fitness: Does the individual hermaphrodite split its time between strategies maximizing its instantaneous reproductive fitness or its evolutionary fitness? Here, we compare these two points of view and extend a game theoretical formalism to a sex allocation model that underlies all sexual behaviors as a result of a dynamic game whose payoff depends on the costs and benefits of sexual reproduction. Using this formalism, we prove that a simultaneous hermaphrodites strategy is stable even for high values of sex changing costs. Moreover, we prove that the stability of a sequential hermaphrodite is linked to the average energy allocated to the pure female strategy.


Subject(s)
Hermaphroditic Organisms/physiology , Models, Biological , Animals , Game Theory , Reproduction/physiology
5.
Entropy (Basel) ; 20(1)2018 Jan 13.
Article in English | MEDLINE | ID: mdl-33265146

ABSTRACT

Networks used in biological applications at different scales (molecule, cell and population) are of different types: neuronal, genetic, and social, but they share the same dynamical concepts, in their continuous differential versions (e.g., non-linear Wilson-Cowan system) as well as in their discrete Boolean versions (e.g., non-linear Hopfield system); in both cases, the notion of interaction graph G(J) associated to its Jacobian matrix J, and also the concepts of frustrated nodes, positive or negative circuits of G(J), kinetic energy, entropy, attractors, structural stability, etc., are relevant and useful for studying the dynamics and the robustness of these systems. We will give some general results available for both continuous and discrete biological networks, and then study some specific applications of three new notions of entropy: (i) attractor entropy, (ii) isochronal entropy and (iii) entropy centrality; in three domains: a neural network involved in the memory evocation, a genetic network responsible of the iron control and a social network accounting for the obesity spread in high school environment.

6.
J Math Biol ; 71(6-7): 1505-24, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25749650

ABSTRACT

We investigate the existence and stability of sexual strategies (sequential hermaphrodite, successive hermaphrodite or gonochore) at a proximate level. To accomplish this, we constructed and analyzed a general dynamical game model structured by size and sex. Our main objective is to study how costs of changing sex and of sexual competition should shape the sexual behavior of a hermaphrodite. We prove that, at the proximate level, size alone is insufficient to explain the tendency for a pair of prospective copulants to elect the male sexual role by virtue of the disparity in the energetic costs of eggs and sperm. In fact, we show that the stability of sequential vs. simultaneous hermaphrodite depends on sex change costs, while the stability of protandrous vs. protogynous strategies depends on competition cost.


Subject(s)
Game Theory , Hermaphroditic Organisms/physiology , Models, Biological , Animals , Disorders of Sex Development , Female , Male , Mathematical Concepts , Sex Determination Processes/physiology , Sexual Behavior, Animal/physiology
7.
BMC Res Notes ; 7: 157, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24636261

ABSTRACT

BACKGROUND: Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. RESULTS: We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. CONCLUSION: Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level.


Subject(s)
Computational Biology , Macrophages/metabolism , Models, Immunological , Protein Interaction Mapping , Apoptosis/genetics , Apoptosis/immunology , Computer Simulation , Databases, Protein , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Macrophages/immunology , Macrophages/microbiology , Molecular Sequence Annotation , Mycobacterium tuberculosis/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...