Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 62(12): 2245-2255, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30368676

ABSTRACT

Temperate deciduous trees can only be productive where winters are cold enough to meet their chilling needs. In the Mediterranean region, chill has traditionally been sufficient for many species, but this may change as temperatures increase. We explored the region's present and future suitability for temperate trees by quantifying chill for the Sfax region in central Tunisia, one of the warmest regions where temperate nuts are commercially grown. We assessed climatic risk by calculating historic chill (since 1973) and using a weather generator calibrated with local weather data (1973-2015) to produce 101 years of chill estimates (computed with the Dynamic Model) and 3 past and 72 future scenarios (for 2041-2070 and 2071-2100, using two representative concentration pathways: RCP4.5 and RCP8.5). For almonds and pistachios, we compared available chill during the chilling period with the species' estimated chilling requirements, and we computed the date by which sufficient chill was expected to have accumulated. Our findings indicated severe chill losses for all future scenarios. For all species, the current chill period is no longer expected to be sufficient for meeting chilling requirements in the future. Chill needs may still be fulfilled later in the year, especially for low-chill almonds, but this would result in delayed phenology, with possible adverse effects on productivity. Temperate nut production is thus unlikely to remain viable at this site, highlighting an urgent need to identify locally appropriate adaptation options. This challenge is likely shared by other warm production regions of temperate fruits and nuts around the world.


Subject(s)
Climate Change , Pistacia/physiology , Prunus dulcis/physiology , Nuts , Seasons , Tunisia
2.
PLoS One ; 11(6): e0157089, 2016.
Article in English | MEDLINE | ID: mdl-27315081

ABSTRACT

The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui') in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the absence of a hormonal root-to-shoot signal. Rain-fed and PRD50 treatments induced increased stem water potential and increased foliar concentrations of ABA, proline and soluble sugars. The stomata of the olive trees were relatively insensitive to super-ambient increases in [CO2] and higher [ABA]. These characteristics of 'hydro-passive' stomatal behaviour indicate that the 'Chetoui' variety of olive tree used in this study lacks the physiological responses required for the successful exploitation of PRD techniques to increase yield and water productivity. Alternative irrigation techniques such as partial deficit irrigation may be more suitable for 'Chetoui' olive production.


Subject(s)
Crops, Agricultural/growth & development , Desiccation , Olea/growth & development , Plant Roots/growth & development , Abscisic Acid/metabolism , Fruit/growth & development , Fruit/metabolism , Humans , Olea/metabolism , Photosynthesis , Plant Leaves/growth & development , Plant Roots/metabolism , Soil , Water
3.
J Plant Physiol ; 190: 36-43, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26638146

ABSTRACT

For grafted plants, salt stress tolerance of the aerial plant part is poorly documented. Thus, we developed a simple, fast and inexpensive method to identify tolerant genotypes. Twigs of 14 mandarin accessions that we previously analyzed as seedlings were cut in solution to prevent embolism and were then evaluated in salt stress condition for a week. Physiological parameters such as gas exchanges, leaf Cl(-) and Na(+), as well as the presence of H2O2 and the activity of enzymes involved in ROS synthesis and detoxification processes were analyzed. One accession known to be tolerant as rootstock was shown to be sensitive with limited Cl(-) translocation from the solution to the shoot while sensitive accessions when grown as seedlings presented limited wilting symptoms and accumulated large leaf Cl(-) content. A model is proposed to explain the different strategies of the plant to cope with high toxic ion content. This method allows separation of the root compartment, where ion exclusion mechanisms may exist and have an impact on the salt stress tolerance of the whole plant.


Subject(s)
Agriculture/methods , Citrus/physiology , Plant Leaves/physiology , Salt Tolerance , Sodium Chloride/pharmacology , Agriculture/economics , Citrus/genetics , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...