Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J Plus ; 138(4): 359, 2023.
Article in English | MEDLINE | ID: mdl-37131342

ABSTRACT

COVID-19 is a pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus is mainly spread by droplets, respiratory secretions, and direct contact. Caused by the huge spread of the COVID-19 epidemic, research is focused on the study of biosensors as it presents a rapid solution for reducing incidents and fatality rates. In this paper, a microchip flow confinement method for the rapid transport of small sample volumes to sensor surfaces is optimized in terms of the confinement coefficient ß, the position of the confinement flow X, and its inclination α relative to the main channel. A numerical simulation based on two-dimensional Navier-Stokes equations has been used. Taguchi's L9(33) orthogonal array was adopted to design the numerical assays taking into account the confining flow parameters (α, ß, and X) on the response time of microfluidic biosensors. Analyzing the signal-to-noise ratio allowed us to determine the most effective combinations of control parameters for reducing the response time. The contribution of the control factors to the detection time was determined via analysis of variance (ANOVA). Numerical predictive models using multiple linear regression (MLR) and an artificial neural network (ANN) were developed to accurately predict microfluidic biosensor response time. This study concludes that the best combination of control factors is α 3 ß 3 X 2 that corresponds to α = 90 ∘ , ß = 25 and X = 40 µm. Analysis of variance (ANOVA) shows that the position of the confinement channel (62% contribution) is the factor most responsible for the reduction in response time. Based on the correlation coefficient (R 2), and value adjustment factor (VAF), the ANN model performed better than the MLR model in terms of prediction accuracy.

2.
Eur Phys J Plus ; 138(1): 96, 2023.
Article in English | MEDLINE | ID: mdl-36741917

ABSTRACT

Microfluidic biosensors have played an important and challenging role for the rapid detection of the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Previous studies have shown that the kinetic binding reaction of the target antigen is strongly affected by process parameters. The purpose of this research was to optimize the performance of a microfluidic biosensor using two different approaches: Taguchi optimization and artificial neural network (ANN) optimization. Taguchi L8(25) orthogonal array involving eight groups of experiments for five key parameters, which are microchannel shape, biosensor position, applied alternating current voltage, adsorption constant, and average inlet flow velocity, at two levels each, are performed to minimize the detection time of a biosensor excited by an alternating current electrothermal force. Signal to noise ratio ( S / N ) and analysis of variance were used to reach the optimal levels of process parameters and to demonstrate their percentage contributions, in terms of improved device response time. The principal results of this study showed that the Taguchi method was able to identify that the kinetic adsorption rate is the most influential parameter at 93% contribution, and the reaction surface position is the least influential parameter at 0.07% contribution. Also, the ANN model was able to accurately predict the optimal input values with a very low prediction error. Overall, the major conclusion of this study is both the Taguchi and ANN approaches can be effectively utilized to optimize the performance of a microfluidic biosensor. These advances have the potential to revolutionize the field of biosensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...