Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 56: 68-72, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24210248

ABSTRACT

Cladode ultrastructural features of two prickly and two spineless Opuntia ficus-indica cultivars were examined using environmental scanning electron and atomic force microscopies. Observations focused on cladode as well as spine and glochid surface micromorphologies. Prickly cultivars were characterized by abundant cracked epicuticular wax deposits covering the cladode surface, with an amorphous structure as observed by AFM, while less abundant waxy plates were observed by ESEM on spineless cultivar cladodes. Further AFM observations allowed a rough granular and crystalloid epicuticular wax structure to be distinguished in spineless cultivars. Regarding spine micromorphology, prickly cultivars had strong persistent spines, observed by ESEM as a compact arrangement of oblong epidermal cells with a rough granular structure. However, deciduous spines in spineless cultivars had a broken transversely fissured epidermis covering a parallel arrangement of fibres. Through AFM, the deciduous spine surface presented an irregular hilly and smooth microrelief while persistent spines exhibited rough helical filamentous prints. ESEM and AFM studies of cladode surfaces from prickly and spineless cactus pear cultivars revealed valuable micro-morphological details that ought to be extended to a large number of O. ficus-indica cultivars.


Subject(s)
Opuntia/ultrastructure , Microscopy, Atomic Force , Microscopy, Electron, Scanning
2.
Microsc Res Tech ; 74(8): 756-62, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21780249

ABSTRACT

Leaf anatomical and ultrastructural responses of "Razegui" and "Muscat Italia" grapevine cultivars to high temperatures were studied under controlled conditions (T > 36°C), based on photonic and electron microscopy. Histological studies performed on leaves from heat-stressed and control grapevines revealed thicker leaf blades under high temperature conditions. Environmental scanning electron microscopy of leaf surfaces from both cultivars allowed observing sinuate epidermal cells on the leaves of grapevines cultivated under heat stress and irregular giant oblong pores on their adaxial surface. When observed by transmission electron microscopy, leaf cross sections in grapevines cultivated under high temperature conditions exhibited folded cuticle and cell wall on the adaxial epidermis layer. Therefore, significantly greater cell wall thicknesses were measured under heat stress than control conditions in both cultivars. Regarding chloroplasts, they were more globular in shape under heat stress compared with control conditions and had disorganized thylakoids with a reduced thickness of grana stacking. The size of starch granule decreased, while the number of plastoglobules increased with heat stress, indicating a reduced carbon metabolism and a beginning of senescence within the 3-month heat stress period. This study confirms widespread adaptive properties in two grapevine cultivars in response to high temperature stress.


Subject(s)
Plant Leaves/physiology , Plant Leaves/ultrastructure , Vitis/physiology , Vitis/ultrastructure , Hot Temperature , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Plant Leaves/anatomy & histology , Stress, Physiological , Vitis/anatomy & histology
3.
J Plant Physiol ; 167(7): 519-25, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20060616

ABSTRACT

Polyamines (PAs) have been suggested to be implicated in plant responses to abiotic and biotic stress. Grapevine is a model perennial plant species whose cultivars respond differently to osmotic stress. In this study, we used two cultivars, one sensitive (S) and one tolerant (T) to drought. In adult vines subjected to drought under greenhouse conditions, total PAs were significantly lower in the control T- and higher in the control S-genotype and significantly increased or decreased, respectively, post-treatment. Soluble Put and Spd exhibited the greatest increase on d 8 post-treatment in the T- but not in the S-genotype, which accumulated soluble Spm. Abscisic acid (ABA) was differentially accumulated in T- and S-genotypes under drought conditions, and activated the PA biosynthetic pathway, which in turn was correlated with the differential increases in PA titers. In parallel, polyamine oxidases (PAOs) increased primarily in the S-genotype. ABA at least partially induced PA accumulation and exodus into the apoplast, where they were oxidized by the apoplastic amine oxidases (AOs), producing H2O2, which signaled secondary stress responses. The results here show that the ABA signaling pathway integrates PAs and AOs to regulate the generation of H2O2, which signals further stress responses or the PCD syndrome.


Subject(s)
Abscisic Acid/metabolism , Droughts , Polyamines/metabolism , Stress, Physiological , Vitis/metabolism , Genotype , Homeostasis , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Vitis/genetics , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...