Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980351

ABSTRACT

Cryopreservation is a reliable technique for the long-term storage and preservation of embryogenic cells, maintaining their viability without loss of their embryogenic capacity. However, the large-scale conservation of grapevine embryogenic lines in cryobanks remains limited. A significant challenge is understanding somatic cell rejuvenation. Here, we investigate the encapsulation/dehydration and encapsulation/vitrification for cryopreserving embryogenic material. Cell rejuvenation and enhanced embryogenic competence were observed after cryopreservation, as evidenced through structural cellular changes observed by histology and electron scanning microscopy. Results showed that cryopreserved samples of 110-Richter, Riesling, and Tempranillo using encapsulation/dehydration had better survival rates, averaging 81%, 62%, and 48%, respectively, while encapsulation/vitrification yielded lower survival rates, averaging 58%, 42%, and 32%, respectively. Cryopreservation also improved post-thaw recovery and regeneration efficiency assessed through regrowth of proembryogenic masses and somatic embryo conversion reaching 54-72% against 11-17% in control samples. Cryopreservation triggered changes in gene expression patterns and exhibited considerable increase at genotype-specific basis of 1.5- to 4.5-fold in SERK1, BBM, and WOX associated to embryogenic competence as well as in ChitIV and LEA involved in stress response. Membrane stability index, hydrogen peroxide, and proline contents were used as indicators of oxidative stress uncovering a key role of an osmotic trans-priming effect leading to cryotolerance. Our finding highlighted that cryopreservation enhances embryogenic capacity in senescent callus and probably acts as a screening process allowing safe maintenance of proembryogenic cells and promoting their recovery. This study provides a high throughput innovation to set up cryolines for cell rejuvenation of grapevine and other important plant species.

2.
Funct Integr Genomics ; 23(1): 12, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36547729

ABSTRACT

Alpha-galactosidase seed imbibition protein (VvSIP) isolated from Vitis vinifera is up-regulated upon salt stress and mediates osmotic stress responses in a tolerant grapevine cultivar. So far, little is known about the putative role of this stress-responsive gene. In the present study, VvSIP function was investigated in model tobacco plants via Agrobacterium-mediated genetic transformation. Our results showed that overexpression of VvSIP exhibited increased tolerance to salinity at germination and late vegetative stage in transgenic Nicotiana benthamiana compared to the nontransgenic plants based on the measurement of the germination rate and biomass production. High salt concentrations of 200 and 400 mM NaCl in greenhouse-grown pot assay resulted in better relative water content, higher leaf osmotic potential, and leaf water potential in transgenic lines when compared to the wild-type (WT) plants. These physiological changes attributed to efficient osmotic adjustment improved plant performance and tolerance to salinity compared to the WT. Moreover, the VvSIP-expressing lines SIP1 and SIP2 showed elevated amounts of chlorophyll with lower malondialdehyde content indicating a reduced lipid peroxidation required to maintain membrane stability. When subjected to high salinity conditions, the transgenic tobacco VvSIP exhibited higher soluble sugar content, which may suggest an enhancement of the carbohydrate metabolism. Our findings indicate that the VvSIP is involved in plant salt tolerance by functioning as a positive regulator of osmotic adjustment and sugar metabolism, both of which are responsible for stress mitigation. Such a candidate gene is highly suitable to alleviate environmental stresses and thus could be a promising candidate for crop improvement.


Subject(s)
Nicotiana , alpha-Galactosidase , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/metabolism , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Galactosidases/genetics , Galactosidases/metabolism , Ectopic Gene Expression , Stress, Physiological/genetics , Water/metabolism , Seeds/genetics , Seeds/metabolism , Gene Expression Regulation, Plant , Salinity
3.
Protoplasma ; 259(5): 1189-1203, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34984633

ABSTRACT

Chitinases are pathogenesis-related proteins, which play an important role in plant growth regulation, defense mechanism, and stress tolerance. Embryogenic cultures from Vitis vinifera cv. Tempranillo exposed to in vitro stress exhibited the expression of an extracellular class IV endochitinase VvChit-IV. Phylogenetic and conserved motif analyses provided insights into the evolutionary relationships of chitinases. A computation-based investigation showed conserved domains and illustrated a chitin-binding site for chitin cleavage with a catalytic domain of glycoside hydrolase. Interestingly, gene expression pattern showed a differential expression of VvChit-IV associated with embryonic stress response to in vitro conditions. In response to in vitro stress, transcript level of VvChit-IV increased in embryogenic calli and cell suspensions and peaked at 1.5 and 3 folds, respectively, when compared to an internal reference gene. Evidence of tissue culture stress-induced endochitinase was reported here for the first time indicating that in vitro stress could mitigate elicitor application to induce chitinase expression and can stimulate an immune response against abiotic constraints. Data showed that up-regulation of VvChit-IV was associated with a substantial increase of H2O2 and proline without significant change in malondialdehyde content suggesting that the H2O2 signaling network might trigger a priming effect to boost the defense response against environmental stress. Endochitinase activation in plant stress mitigation was thus highlighted to improve tolerance through attenuation of oxidative stress. This study revealed that the grapevine endochitinase is promising for enhancing coping-oriented adaptation and abiotic stress tolerance, which gives new insights into its feasibility for use in cross-tolerance and crop improvement.


Subject(s)
Chitinases , Vitis , Cell Culture Techniques , Chitin/metabolism , Chitinases/genetics , Chitinases/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Up-Regulation , Vitis/genetics , Vitis/metabolism
4.
Transgenic Res ; 30(3): 263-274, 2021 06.
Article in English | MEDLINE | ID: mdl-33880718

ABSTRACT

Engineered plants have been widely produced for fundamental and practical use. Several methods have been developed for genetically modified crop detection and quantification; however; they still laborious and expensive. Efforts are needed to set-up diagnosis-oriented techniques as alternatives to overcome DNA extraction which remains a tedious and time-consuming procedure. Here, we established a standard direct PCR workflow using a regular Taq polymerase without prior DNA purification over a wide range of plant species. Only a small amount of fresh tissue allowed direct amplification of target gene sequences. Evaluation of accuracy, sensitivity, and reproducibility of direct PCR assay was investigated for proof-of-concept, and subsequently applied to gene detection assays and rapid transgenic revealing. The newly established method achieved full success and has amplified constitutive housekeeping genes from several plant specimens in a reproducible manner with high-quality sequencing profiles. In our case, the screening of transgenic plants confirmed that both the gfp-ER reporter gene and the npt II selectable marker were integrated into the plant genome. This direct PCR approach provides a powerful tool for large-scale PCR-based gene detection making DNA purification irrelevant. It could be easily implemented for downstream applications in the field of genetic fingerprinting, plant biotechnology, and functional genomics.


Subject(s)
Genetic Engineering , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Polymerase Chain Reaction , Crops, Agricultural , DNA, Plant/genetics , Genome, Plant , Plant Proteins/isolation & purification
5.
3 Biotech ; 7(4): 246, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28711981

ABSTRACT

Taking into account the limits of current genotyping methodologies, we have established a versatile direct PCR method on intact microtissue samples without prior DNA isolation. A simple and standard protocol was developed and validated on a wide range of living organisms including bacterial and fungal strains, plant species and human samples. This allows reliable amplification of target genomic DNA fragment directly from source material using minimal amount of tissue which makes DNA purification irrelevant for a number of biological applications. The direct PCR technique established here represents an excellent alternative to traditional amplification methods used for real-time detection. Since this approach was efficiently and universally applied for high-throughput molecular screening, its implementation will offer new insights for several investigations in human health, biomedical diagnosis, plant biotechnology, as well as in applied environmental and food microbiology.

6.
Curr Genomics ; 17(6): 460-475, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28217003

ABSTRACT

In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...