Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 31(1): 193-203, 2002.
Article in English | MEDLINE | ID: mdl-11837423

ABSTRACT

Only a small fraction of the transition metals content in sludge-amended soils is soluble, and yet this fraction is a major contributor to the mobility and bioavailability of the metals. The chemical species of zinc (Zn) and copper (Cu) in the soluble fractions of soil-sludge mixtures were characterized with respect to their charge, molecular weight, and stoichiometry using ion exchange resin and gel chromatography procedures. The change in the metals' species with time after sludge application was followed for 100 d. Copper in the water extracts of the sludge-sand mixtures was found almost exclusively in low molecular weight (below 1000 Da) complexes. Higher molecular weight (around 2500 Da) dissolved organic carbon (DOC) was present in the extracts as well, but this DOC fraction exhibited little complexation. Copper was present in the extracts mainly as negatively charged species throughout the incubation period, and zinc tended to form zwitter ions. As incubation progressed, the relative content of positively charged Zn in solution increased. Complexation capacity of DOC in sludge water extract, extrapolated to infinite dilution, was 8.75 mM Ca g(-1) DOC. When the complexation capacity of the extract is near saturation, a mean Cu-DOC complex can be defined. It consists of 1.9 Cu atoms attached to DOC species containing 5.6 C atoms. Thus, the organic Cu complexes consist primarily of about two Cu ions attached to DOC species containing only five or six C atoms. Amino acids and small peptides or polycarboxylic acids, such as citric acid, thus may be important complexing agents of the metal.


Subject(s)
Copper/chemistry , Environmental Monitoring , Sewage/chemistry , Soil , Zinc/chemistry , Amino Acids/chemistry , Biological Availability , Chromatography , Ion Exchange Resins , Molecular Weight , Organic Chemicals , Soil Pollutants/analysis , Solubility
2.
Article in English | MEDLINE | ID: mdl-6136378

ABSTRACT

In a comparative study on avian cutaneous evaporation, two species of Phasianidae, Japanese quail Coturnix coturnix japonica and chukar partridge Alectoris chukar, and three species of Columbidae, palm dove Streptopelia senegalensis, collared turtle dove Streptopelia decaocto and rock pigeon Columbia livia, were investigated. The skin resistance to vapor diffusion (rs) and cutaneous water loss (CWL) were studied in these birds exposed to air temperatures (Ta) between 20 and 52 degrees C. The skin resistance was measured with Lambda instrument diffusive resistance meter. Skin resistance within the thermo-neutral zone varied between a minimum of 62 sec/cm in the palm dove exposed to 20 degrees C and a maximum of 309.1 sec/cm in the partridge exposed to 36 degrees C. The CWL values were 2.5 mg H2O/cm2.hr and 0.51 mg H2O/cm2.hr respectively. Maximum CWL of the quail and partridge was 1.9-2.1 mg H2O/cm2.hr, equivalent to a cooling capacity of about 17% of metabolic heat production at 45 degrees C Ta. In the palm dove, collared dove and pigeon CWL reached 6.8, 13.1 and 20.9 mg H2O/cm2.hr and rs values reached 31.2, 16.2 and 9.4 sec/cm respectively. The cooling capacity amounted to 51.5, 86.1 and 96.5% of metabolic heat during heat stress (52 degrees C). The significance of skin evaporation in body temperature regulation of heat-stressed birds is discussed.


Subject(s)
Birds/physiology , Body Water/physiology , Hot Temperature , Skin Physiological Phenomena , Stress, Physiological/physiopathology , Animals , Columbidae/physiology , Coturnix/physiology , Models, Biological , Respiration , Skin Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...