Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Methods ; 81(1): 11-6, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20114063

ABSTRACT

The accurate sub-typing of Salmonella enterica isolates is essential for epidemiological investigations and surveillance of Salmonella infections. Salmonella isolates are currently identified using the Kauffman-White serotyping scheme. Multilocus sequence typing (MLST) schemes have been developed for the major bacterial pathogens including Salmonella and have assisted in understanding the molecular epidemiology and population biology of these organisms. Recently, the DiversiLab rep-PCR system has been developed using micro-fluidic chips to provide standardized, semi-automated fingerprinting for pathogens including S. enterica. In the current study, 71 isolates of S. enterica, representing 21 serovars, were analyzed using MLST and the DiversiLab rep-PCR system. MLST was able to identify 31 sequence types (STs), while the DiversiLab system revealed 38 DiversiLab types (DTs). The rep-PCR distinguished isolates of different serovars and showed greater discriminatory power (0.95) than MLST typing (0.89). Rep-PCR exhibited 92% concordance with MLST and 90% with serotyping, while the concordance level of MLST typing with serotyping was 96%, representing a strong association. Comparison of rep-PCR profiles with those held in an online library database led to the accurate prediction of serovar in 63% of cases and resulted in inaccurate predictions for 10% of profiles. MLST and the rep-PCR system may provide useful additional informative techniques for the molecular identification of S. enterica. We conclude that the DiversiLab rep-PCR system may provide a rapid (less than 4h) and standardized method for sub-typing isolates of S. enterica.


Subject(s)
Bacterial Typing Techniques , DNA Fingerprinting , DNA, Bacterial/genetics , Salmonella enterica/classification , Salmonella enterica/genetics , Automation/methods , Genotype , Humans , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Sequence Analysis, DNA/methods
2.
J Clin Microbiol ; 48(4): 1055-60, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20164272

ABSTRACT

Food-borne salmonellosis is a major manifestation of gastrointestinal disease in humans across the globe. Accurate and rapid identification methods could positively impact the identification of isolates, enhance outbreak investigation, and aid infection control. The SNaPshot multiplex system is a primer extension-based method that enables multiplexing of single nucleotide polymorphisms (SNPs). Here the method has been developed for the identification of five Salmonella serotypes, commonly detected in the United Kingdom, based on serotype-specific SNPs identified in the multilocus sequence typing (MLST) database of Salmonella enterica. The SNPs, in genes hemD, thrA, purE, and sucA, acted as surrogate markers for S. enterica serovars Typhimurium, Enteritidis, Virchow, Infantis, and Braenderup. The multiplex primer extension assay (MPEA) was conducted in two separate panels and evaluated using 152 Salmonella enterica isolates that were characterized by MLST. The MPEA was shown to be 100% specific and sensitive, within this collection of isolates. The MPEA is a sensitive and specific method for the identification and detection of Salmonella serotypes based upon SNPs seen in MLST data. The method can be applied in less than 6 h and has the potential to improve patient care and source tracing. The utility of the assay for identification of Salmonella serotypes directly from clinical specimens and food samples warrants further investigation.


Subject(s)
Bacterial Typing Techniques , Foodborne Diseases/microbiology , Salmonella Infections/diagnosis , Salmonella enterica/classification , Salmonella enterica/genetics , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Genotype , Humans , Polymorphism, Single Nucleotide , Salmonella Infections/microbiology , Salmonella enterica/isolation & purification , Sensitivity and Specificity , Serotyping , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...