Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(18): 32990-33002, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242349

ABSTRACT

We present a C-band Mach-Zehnder modulator with meandered phase shifters and a compact footprint of 432 × 260 µm2 on the silicon-on-insulator platform. Electrode, p-n junction, and optical transit time are considered when performing the electro-optic bandwidth (EO BW) simulations. The simulation results prove that the dominant bandwidth limiting factor for this type of modulator is optical transit time. The insertion loss of the modulator without bias is 2.1 dB. The measured half-wave voltage (V π ) and 3-dB EO BW at -0.5 V bias are 6.4 V and 7.7 GHz, respectively. 53 Gbaud PAM-4 transmission over 2 km of standard single-mode fiber is achieved at a bit error rate (BER) below the 6.7% overhead hard-decision forward error correction BER threshold of 3.8×10 -3.

2.
Opt Express ; 26(7): 8904-8915, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715851

ABSTRACT

We characterize the electro-optic frequency response of a four-port traveling-wave dual-drive modulator with relatively strong coupling amongst the electrodes. We show that the electro-optic frequency response of the MZM can still be predicted with the 2×2 cascaded matrix model if the MZM is symmetric and differentially driven.

3.
Opt Express ; 25(17): 20202-20215, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041704

ABSTRACT

We present a study on electrical and optical trade-offs of the doping map in a ring modulator. Here, we investigate the effects of the high-doped region distance to edge of the waveguide sidewall. Four groups of ring modulators with different rib-to-contact distances are fabricated and measured where the key parameters such as extinction ratio, insertion loss, transmission penalty, and bandwidth are compared quantitatively. Small-signal responses for the selected ring modulators are simulated where results are in agreement with measurement results. We show that, at 4dB extinction ratio, decreasing the high-doped region distance to rib from 800nm to 350nm will increase the bandwidth by 3.8 ×. However, we observed 8.4dB increase the insertion loss. We also show that the high-doped region location affects the trade-off between bandwidth and frequency response magnitude at low frequencies. At 350nm, this trade off is 2.5 × and 3.8× more efficient compared to 550nm and 800nm, respectively.

4.
Healthc Technol Lett ; 1(1): 45-50, 2014 Jan.
Article in English | MEDLINE | ID: mdl-26609376

ABSTRACT

Temporal seizures due to hippocampal origins are very common among epileptic patients. Presented is a novel seizure prediction approach employing correlation and chaos theories. The early identification of seizure signature allows for various preventive measures to be undertaken. Electro-encephalography signals are spectrally broken down into the following sub-bands: delta; theta; alpha; beta; and gamma. The proposed approach consists of observing a high correlation level between any pair of electrodes for the lower frequencies and a decrease in the Lyapunov index (chaos or entropy) for the higher frequencies. Power spectral density and statistical analysis tools were used to determine threshold levels for the lower frequencies. After studying all five sub-bands, the analysis has revealed that the seizure signature can be extracted from the delta band and the high frequencies. High frequencies are defined as both the gamma band and the ripples occurring within the 60-120 Hz sub-band. To validate the proposed approach, six patients from both sexes and various age groups with temporal epilepsies originating from the hippocampal area were studied using the Freiburg database. An average seizure prediction of 30 min, an anticipation accuracy of 72%, and a false-positive rate of 0% were accomplished throughout 200 h of recording time.

SELECTION OF CITATIONS
SEARCH DETAIL
...