Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9788, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328698

ABSTRACT

When it comes to aging, some colonial invertebrates present disparate patterns from the customary aging phenomenon in unitary organisms, where a single senescence phenomenon along ontogeny culminates in their inevitable deaths. Here we studied aging processes in 81 colonies of the marine urochordate Botryllus schlosseri each followed from birth to death (over 720 days). The colonies were divided between three life history strategies, each distinct from the others based on the presence/absence of colonial fission: NF (no fission), FA (fission develops after the colony reaches maximal size), and FB (fission develops before the colony reaches maximal size). The study revealed recurring patterns in sexual reproductive statuses (hermaphroditism and male-only settings), colonial vigor, and size. These recurring patterns, collectively referred to as an Orshina, with one or more 'astogenic segments' on the genotype level. The combination of these segments forms the Orshina rhythm. Each Orshina segment lasts about three months (equivalent to 13 blastogenic cycles), and concludes with either the colonial death or rejuvenation, and is manipulated by absence/existing of fission events in NF/FA/FB strategies. These findings indicate that reproduction, life span, death, rejuvenation and fission events are important scheduled biological components in the constructed Orshina rhythm, a novel aging phenomenon.


Subject(s)
Urochordata , Animals , Male , Urochordata/genetics , Rejuvenation , Aging , Reproduction
2.
Sci Rep ; 12(1): 15117, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068259

ABSTRACT

Each of the few known life-history strategies (e.g., r/K and parity [semelparity and iteroparity]), is a composite stratagem, signified by co-evolved sets of trade-offs with stochastically distributed variations that do not form novel structured strategies. Tracking the demographic traits of 81 Botryllus schlosseri (a marine urochordate) colonies, from birth to death, we revealed three co-existing novel life-history strategies in this long-standing laboratory-bred population, all are bracketed through colonial fission (termed NF, FA and FB for no fission, fission after and fission before reaching maximal colony size, respectively) and derived from organisms maintained in a benign, highly invariable environment. This environment allows us to capture the strategists' blueprints and their net performance through 13 traits, each branded by high within-strategy variation. Yet, six traits differed significantly among the strategies and, in two, the FB was notably different. These results frame fissions in colonial organisms not as demographic traits, but as pivotal agents for life-history strategies.


Subject(s)
Life History Traits , Urochordata , Animals , Demography
3.
Biol Rev Camb Philos Soc ; 97(1): 299-325, 2022 02.
Article in English | MEDLINE | ID: mdl-34617397

ABSTRACT

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.


Subject(s)
Adult Stem Cells , Drosophila melanogaster , Animals , Cell Differentiation , Phenotype
4.
Dev Biol ; 433(1): 33-46, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29128264

ABSTRACT

Botryllus schlosseri, a colonial marine invertebrate, exhibits three generations of short-lived astogenic modules that continuously grow and die throughout the colony's entire lifespan, within week-long repeating budding cycles (blastogenesis), each consisting of four stages (A-D). At stage D, aging is followed by the complete absorption of adult modules (zooids) via a massive apoptotic process. Here we studied in Botryllus the protein mortalin (HSP70s member), a molecule largely known for its association with aging and proliferation. In-situ hybridization and qPCR assays reveal that mortalin follows the cyclic pattern of blastogenesis. Colonies at blastogenic stage D display the highest mortalin levels, and young modules exhibit elevated mortalin levels compared to old modules. Manipulations of mortalin with the specific allosteric inhibitor MKT-077 has led to a decrease in the modules' growth rate and the development of abnormal somatic/germinal morphologies (primarily in vasculature and in organs such as the endostyle, the stomach and gonads). We therefore propose that mortalin plays a significant role in the astogeny and aging of colonial modules in B. schlosseri, by direct involvement in the regulation of blastogenesis.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Urochordata/genetics , Urochordata/metabolism , Age Factors , Aging/metabolism , Animals , Apoptosis/physiology , HSP70 Heat-Shock Proteins/physiology , Heat-Shock Proteins , Pyridines/metabolism , Reproduction, Asexual , Thiazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...