Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 27(8): 3316-3327, 2022 08.
Article in English | MEDLINE | ID: mdl-35538192

ABSTRACT

De novo heterozygous mutations in activity-dependent neuroprotective protein (ADNP) cause autistic ADNP syndrome. ADNP mutations impair microtubule (MT) function, essential for synaptic activity. The ADNP MT-associating fragment NAPVSIPQ (called NAP) contains an MT end-binding protein interacting domain, SxIP (mimicking the active-peptide, SKIP). We hypothesized that not all ADNP mutations are similarly deleterious and that the NAPV portion of NAPVSIPQ is biologically active. Using the eukaryotic linear motif (ELM) resource, we identified a Src homology 3 (SH3) domain-ligand association site in NAP responsible for controlling signaling pathways regulating the cytoskeleton, namely NAPVSIP. Altogether, we mapped multiple SH3-binding sites in ADNP. Comparisons of the effects of ADNP mutations p.Glu830synfs*83, p.Lys408Valfs*31, p.Ser404* on MT dynamics and Tau interactions (live-cell fluorescence-microscopy) suggested spared toxic function in p.Lys408Valfs*31, with a regained SH3-binding motif due to the frameshift insertion. Site-directed-mutagenesis, abolishing the p.Lys408Valfs*31 SH3-binding motif, produced MT toxicity. NAP normalized MT activities in the face of all ADNP mutations, although, SKIP, missing the SH3-binding motif, showed reduced efficacy in terms of MT-Tau interactions, as compared with NAP. Lastly, SH3 and multiple ankyrin repeat domains protein 3 (SHANK3), a major autism gene product, interact with the cytoskeleton through an actin-binding motif to modify behavior. Similarly, ELM analysis identified an actin-binding site on ADNP, suggesting direct SH3 and indirect SHANK3/ADNP associations. Actin co-immunoprecipitations from mouse brain extracts showed NAP-mediated normalization of Shank3-Adnp-actin interactions. Furthermore, NAP treatment ameliorated aberrant behavior in mice homozygous for the Shank3 ASD-linked InsG3680 mutation, revealing a fundamental shared mechanism between ADNP and SHANK3.


Subject(s)
Autistic Disorder , Homeodomain Proteins , Microfilament Proteins , Nerve Tissue Proteins , Animals , Mice , Actins , Autistic Disorder/metabolism , Homeodomain Proteins/genetics , Microfilament Proteins/metabolism , Microtubules/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
2.
Biol Psychiatry ; 92(1): 81-95, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34865853

ABSTRACT

BACKGROUND: ADNP is essential for embryonic development. As such, de novo ADNP mutations lead to an intractable autism/intellectual disability syndrome requiring investigation. METHODS: Mimicking humans, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 editing produced mice carrying heterozygous Adnp p.Tyr718∗ (Tyr), a paralog of the most common ADNP syndrome mutation. Phenotypic rescue was validated by treatment with the microtubule/autophagy-protective ADNP fragment NAPVSIPQ (NAP). RESULTS: RNA sequencing of spleens, representing a peripheral biomarker source, revealed Tyr-specific sex differences (e.g., cell cycle), accentuated in females (with significant effects on antigen processing and cellular senescence) and corrected by NAP. Differentially expressed, NAP-correctable transcripts, including the autophagy and microbiome resilience-linked FOXO3, were also deregulated in human patient-derived ADNP-mutated lymphoblastoid cells. There were also Tyr sex-specific microbiota signatures. Phenotypically, Tyr mice, similar to patients with ADNP syndrome, exhibited delayed development coupled with sex-dependent gait defects. Speech acquisition delays paralleled sex-specific mouse syntax abnormalities. Anatomically, dendritic spine densities/morphologies were decreased with NAP amelioration. These findings were replicated in the Adnp+/- mouse, including Foxo3 deregulation, required for dendritic spine formation. Grooming duration and nociception threshold (autistic traits) were significantly affected only in males. Early-onset tauopathy was accentuated in males (hippocampus and visual cortex), mimicking humans, and was paralleled by impaired visual evoked potentials and correction by acute NAP treatment. CONCLUSIONS: Tyr mice model ADNP syndrome pathology. The newly discovered ADNP/NAP target FOXO3 controls the autophagy initiator LC3 (microtubule-associated protein 1 light chain 3), with known ADNP binding to LC3 augmented by NAP, protecting against tauopathy. NAP amelioration attests to specificity, with potential for drug development targeting accessible biomarkers.


Subject(s)
Autistic Disorder , Intellectual Disability , Tauopathies , Animals , Autistic Disorder/pathology , Brain/metabolism , Evoked Potentials, Visual , Female , Gene Expression , Homeodomain Proteins/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Male , Mice , Nerve Tissue Proteins/genetics , Tauopathies/metabolism , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...