Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1155341, 2023.
Article in English | MEDLINE | ID: mdl-37332699

ABSTRACT

Xanthomonas hortorum pv. pelargonii is the causative agent of bacterial blight in geranium ornamental plants, the most threatening bacterial disease of this plant worldwide. Xanthomonas fragariae is the causative agent of angular leaf spot in strawberries, where it poses a significant threat to the strawberry industry. Both pathogens rely on the type III secretion system and the translocation of effector proteins into the plant cells for their pathogenicity. Effectidor is a freely available web server we have previously developed for the prediction of type III effectors in bacterial genomes. Following a complete genome sequencing and assembly of an Israeli isolate of Xanthomonas hortorum pv. pelargonii - strain 305, we used Effectidor to predict effector encoding genes both in this newly sequenced genome, and in X. fragariae strain Fap21, and validated its predictions experimentally. Four and two genes in X. hortorum and X. fragariae, respectively, contained an active translocation signal that allowed the translocation of the reporter AvrBs2 that induced the hypersensitive response in pepper leaves, and are thus considered validated novel effectors. These newly validated effectors are XopBB, XopBC, XopBD, XopBE, XopBF, and XopBG.

2.
J Virol ; 96(6): e0175721, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107373

ABSTRACT

Emerging viruses impose global threats to animal and human populations and may bear novel genes with limited homology to known sequences, necessitating the development of novel approaches to infer and test protein functions. This challenge is dramatically evident in tilapia lake virus (TiLV), an emerging "orthomyxo-like" virus that threatens the global tilapia aquaculture and food security of millions of people. The majority of TiLV proteins have no homology to known sequences, impeding functionality assessments. Using a novel bioinformatics approach, we predicted that TiLV's Protein 4 encodes the nucleoprotein, a factor essential for viral RNA replication. Multiple methodologies revealed the expected properties of orthomyxoviral nucleoproteins. A modified yeast three-hybrid assay detected Protein 4-RNA interactions, which were independent of the RNA sequence, and identified specific positively charged residues involved. Protein 4-RNA interactions were uncovered by R-DeeP and XRNAX methodologies. Immunoelectron microscopy found that multiple Protein 4 copies localized along enriched ribonucleoproteins. TiLV RNA from cells and virions coimmunoprecipitated with Protein 4. Immunofluorescence microscopy detected Protein 4 in the cytoplasm and nuclei, and nuclear Protein 4 increased upon CRM1 inhibition, suggesting CRM1-dependent nuclear export of TiLV RNA. Together, these data reveal TiLV's nucleoprotein and highlight the ability to infer protein functionality, including novel RNA-binding proteins, in emerging pathogens. These are important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens. IMPORTANCE Tilapia is an important source of dietary protein, especially in developing countries. Massive losses of tilapia were identified worldwide, risking the food security of millions of people. Tilapia lake virus (TiLV) is an emerging pathogen responsible for these disease outbreaks. TiLV's genome encodes 10 major proteins, 9 of which show no homology to other known viral or cellular proteins, hindering functionality assessment of these proteins. Here, we describe a novel bioinformatics approach to infer the functionality of TiLV proteins, which predicted Protein 4 as the nucleoprotein, a factor essential for viral RNA replication. We provided experimental support for this prediction by applying multiple molecular, biochemical, and imaging approaches. Overall, we illustrate a strategy for functional analyses in viral discovery. The strategy is important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens.


Subject(s)
Nucleoproteins , RNA Viruses , Tilapia , Animals , Fish Diseases/virology , Nucleoproteins/genetics , Nucleoproteins/metabolism , RNA Virus Infections/virology , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/pathogenicity , RNA, Viral/genetics , Tilapia/genetics
3.
mSystems ; 6(1)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33531410

ABSTRACT

Degradation of intracellular proteins in Gram-negative bacteria regulates various cellular processes and serves as a quality control mechanism by eliminating damaged proteins. To understand what causes the proteolytic machinery of the cell to degrade some proteins while sparing others, we employed a quantitative pulsed-SILAC (stable isotope labeling with amino acids in cell culture) method followed by mass spectrometry analysis to determine the half-lives for the proteome of exponentially growing Escherichia coli, under standard conditions. We developed a likelihood-based statistical test to find actively degraded proteins and identified dozens of fast-degrading novel proteins. Finally, we used structural, physicochemical, and protein-protein interaction network descriptors to train a machine learning classifier to discriminate fast-degrading proteins from the rest of the proteome, achieving an area under the receiver operating characteristic curve (AUC) of 0.72.IMPORTANCE Bacteria use protein degradation to control proliferation, dispose of misfolded proteins, and adapt to physiological and environmental shifts, but the factors that dictate which proteins are prone to degradation are mostly unknown. In this study, we have used a combined computational-experimental approach to explore protein degradation in E. coli We discovered that the proteome of E. coli is composed of three protein populations that are distinct in terms of stability and functionality, and we show that fast-degrading proteins can be identified using a combination of various protein properties. Our findings expand the understanding of protein degradation in bacteria and have implications for protein engineering. Moreover, as rapidly degraded proteins may play an important role in pathogenesis, our findings may help to identify new potential antibacterial drug targets.

4.
Am J Pathol ; 184(11): 2936-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25196308

ABSTRACT

Protein phosphatase magnesium dependent 1A (PPM1A) has been implicated in fibrosis and skin wounding. We generated PPM1A knockout mice to study the role of PPM1A in the wound healing-inflammation-angiogenesis cross talk. The role of PPM1A in these processes was studied using the ocular alkali burn model system. In the injured cornea the absence of PPM1A led to enhanced inflammatory response, stromal keratocyte transactivation, fibrosis, increased p38 mitogen-activated protein kinase phosphorylation, elevated expression of transforming growth factor-ß-related genes (including Acta2, TGF-ß, Col1, MMP9, and VEGF) and subsequently to neovascularization. Augmented angiogenesis in the absence of PPM1A is a general process occurring in vivo in PPM1A knockout mice upon subcutaneous Matrigel injection and ex vivo in aortic ring Matrigel cultures. Using primary keratocyte cultures and various experimental approaches, we found that phospho-p38 is a favored PPM1A substrate and that by its dephosphorylation PPM1A participates in the regulation of the transforming growth factor-ß signaling cascade, the hallmark of inflammation and the angiogenic process. On the whole, the studies presented here position PPM1A as a new player in the wound healing-inflammation-angiogenesis axis in mouse, reveal its crucial role in homeostasis on injury, and highlight its potential as a therapeutic mediator in pathologic conditions, such as inflammation and angiogenesis disorders, including cancer.


Subject(s)
Burns, Chemical/pathology , Inflammation/genetics , Neovascularization, Pathologic/genetics , Phosphoprotein Phosphatases/genetics , Wound Healing/genetics , Animals , Burns, Chemical/genetics , Burns, Chemical/metabolism , Cornea/metabolism , Cornea/pathology , Inflammation/metabolism , Mice , Mice, Knockout , Neovascularization, Pathologic/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Phosphatase 2C , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Cell Mol Biol Lett ; 17(3): 433-45, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22669481

ABSTRACT

Oocyte maturation in mammals is a multiple-stage process that generates fertilizable oocytes. Ovarian oocytes are arrested at prophase of the first meiotic division characterized by the presence of a germinal vesicle. Towards ovulation, the oocytes resume meiosis and proceed to the second metaphase in a process known as maturation; they undergo nuclear and cytoplasmic changes that are accompanied by translation and degradation of mRNA. Protein phosphatase 1A, magnesium dependent, alpha isoform (PPM1A), which belongs to the metal-dependent serine/threonine protein phosphatase family, is highly conserved during evolution. PPM1A plays a significant role in many cellular functions such as cell cycle progression, apoptosis and cellular differentiation. It works through diverse signaling pathways, including p38 MAP kinase JNK and transforming growth factor beta (TGF-ß). Herein we report that PPM1A is expressed in mouse oocytes and that its mRNA level rises during oocyte maturation. Using quantitative real-time polymerase chain reaction (qPCR) and western blot analysis, we found that PPM1A mRNA is synthesized at the beginning of the maturation process and remains elevated in the mature oocytes, promoting the accumulation of PPM1A protein. Since PPM1A function is mainly affected by its level, we propose that it might have an important role in oocyte maturation.


Subject(s)
Oocytes/growth & development , Oogenesis , Phosphoprotein Phosphatases , RNA, Messenger/metabolism , Animals , Cells, Cultured , Cumulus Cells/cytology , Cumulus Cells/metabolism , Female , Gene Expression Regulation, Developmental , Granulosa Cells/cytology , Granulosa Cells/metabolism , Meiosis , Mice , Mice, Inbred C57BL , Oocytes/metabolism , Phosphoprotein Phosphatases/biosynthesis , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/physiology , Protein Phosphatase 2C
6.
PLoS One ; 7(2): e32438, 2012.
Article in English | MEDLINE | ID: mdl-22384250

ABSTRACT

The serine/threonine phosphatase type 2C (PPM1A) has a broad range of substrates, and its role in regulating stress response is well established. We have investigated the involvement of PPM1A in the survival and differentiation processes of PC6-3 cells, a subclone of the PC12 cell line. This cell line can differentiate into neuron like cells upon exposure to nerve growth factor (NGF). Overexpression of PPM1A in naive PC6-3 cells caused cell cycle arrest at the G2/M phase followed by apoptosis. Interestingly, PPM1A overexpression did not affect fully differentiated cells. Using PPM1A overexpressing cells and PPM1A knockdown cells, we show that this phosphatase affects NGF signaling in PC6-3 cells and is engaged in neurite outgrowth. In addition, the ablation of PPM1A interferes with NGF-induced growth arrest during differentiation of PC6-3 cells.


Subject(s)
Gene Expression Regulation, Enzymologic , Phosphoprotein Phosphatases/metabolism , Animals , Apoptosis , Bromodeoxyuridine/pharmacology , Cell Cycle , Cell Differentiation , Cell Division , Flow Cytometry/methods , G2 Phase , Models, Biological , Nerve Growth Factor/metabolism , PC12 Cells , Plasmids/metabolism , Protein Phosphatase 2C , Rats , Transfection
8.
J Biol Chem ; 278(16): 14299-305, 2003 Apr 18.
Article in English | MEDLINE | ID: mdl-12514180

ABSTRACT

Protein phosphatase 2C (PP2C) dephosphorylates a broad range of substrates, regulating stress response and growth-related pathways in both prokaryotes and eukaryotes. We now demonstrate that PP2C alpha, a major mammalian isoform, inhibits cell growth and activates the p53 pathway. In 293 cell clones, in which PP2C alpha expression is regulated by a tetracycline-inducible promoter, PP2C alpha overexpression led to G(2)/M cell cycle arrest and apoptosis. Furthermore, PP2C alpha induced the expression of endogenous p53 and the p53-responsive gene p21. Activation of the p53 pathway by PP2C alpha took place both in cells harboring endogenous p53, as well as in p53-null cells transfected with exogenous p53. Induction of PP2C alpha resulted in an increase in the overall levels of p53 protein as well as an augmentation of p53 transcription activity. The dephosphorylation activity of PP2C alpha is essential to the described phenomena, as none of these effects was detected when an enzymatically inactive PP2C alpha mutant was overexpressed. p53 plays an important role in PP2C alpha-directed cell cycle arrest and apoptosis because perturbation of p53 expression in human 293 cells by human papillomavirus E6 led to a significant increase in cell survival. The role of PP2C alpha in p53 activation is discussed.


Subject(s)
Phosphoprotein Phosphatases/metabolism , Tumor Suppressor Protein p53/metabolism , Antibodies, Monoclonal/metabolism , Apoptosis , Cell Cycle , Cell Division , Cell Line , Cell Survival , Flow Cytometry , G2 Phase , Humans , Luciferases/metabolism , Microscopy, Fluorescence , Mitosis , Mutation , Phosphorylation , Plasmids/metabolism , Protein Isoforms , Protein Phosphatase 2C , Retroviridae/genetics , Rosaniline Dyes/pharmacology , Time Factors , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...