Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 80(6): 2654-64, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16501075

ABSTRACT

Passive immunotherapy is potentially effective in preventing reinfection of liver grafts in hepatitis C virus (HCV)-associated liver transplant patients. A combination of monoclonal antibodies directed against different epitopes may be advantageous against a highly mutating virus such as HCV. Two human monoclonal antibodies (HumAbs) against the E2 envelope protein of HCV were developed and tested for the ability to neutralize the virus and prevent human liver infection. These antibodies, designated HCV-AB 68 and HCV-AB 65, recognize different conformational epitopes on E2. They were characterized in vitro biochemically and functionally. Both HumAbs are immunoglobulin G1 and have affinity constants to recombinant E2 constructs in the range of 10(-10) M. They are able to immunoprecipitate HCV particles from infected patients' sera from diverse genotypes and to stain HCV-infected human liver tissue. Both antibodies can fix complement and form immune complexes, but they do not activate complement-dependent or antibody-dependent cytotoxicity. Upon complement fixation, the monoclonal antibodies induce phagocytosis of the immune complexes by neutrophils, suggesting that the mechanism of viral clearance includes endocytosis. In vivo, in the HCV-Trimera model, both HumAbs were capable of inhibiting HCV infection of human liver fragments and of reducing the mean viral load in HCV-positive animals. The demonstrated neutralizing activities of HCV-AB 68 and HCV-AB 65 suggest that they have the potential to prevent reinfection in liver transplant patients and to serve as prophylactic treatment in postexposure events.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Hepacivirus/immunology , Hepatitis C Antibodies/therapeutic use , Hepatitis C/prevention & control , Liver Transplantation/adverse effects , Viral Envelope Proteins/immunology , Amino Acid Sequence , Animals , Drug Evaluation, Preclinical , Humans , Mice , Molecular Sequence Data , Neutralization Tests , Recurrence , Sequence Analysis, DNA
2.
Nucleic Acids Res ; 33(9): e81, 2005 May 19.
Article in English | MEDLINE | ID: mdl-15905471

ABSTRACT

The use of oligonucleotide-assisted cleavage and ligation (ONCL), a novel approach to the capture of gene repertoires, in the construction of a phage-display immune antibody library is described. ONCL begins with rapid amplification of cDNA ends to amplify all members equally. A single, specific cut near 5' and/or 3' end of each gene fragment (in single stranded form) is facilitated by hybridization with an appropriate oligonucleotide adapter. Directional cloning of targeted DNA is accomplished by ligation of a partially duplex DNA molecule (containing suitable restriction sites) and amplification with primers in constant regions. To demonstrate utility and reliability of ONCL, a human antibody repertoire was cloned from IgG mRNA extracted from human B-lymphocytes engrafted in Trimera mice. These mice were transplanted with peripheral blood lymphocytes from Candida albicans infected individuals and subsequently immunized with C.albicans glyceraldehyde-3-phosphate dehydrogenase (GAPDH). DNA sequencing showed that ONCL resulted in efficient capture of gene repertoires. Indeed, full representation of all V(H) families/segments was observed showing that ONCL did not introduce cloning biases for or against any V(H) family. We validated the efficiency of ONCL by creating a functional Fab phage-display library with a size of 3.3 x 10(10) and by selecting five unique Fabs against GAPDH antigen.


Subject(s)
Cloning, Molecular/methods , DNA, Complementary , Genes, Immunoglobulin , Oligonucleotides/chemistry , Peptide Library , Adolescent , Adult , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity , Biotechnology/methods , Candida albicans/enzymology , Candida albicans/immunology , Female , Glyceraldehyde-3-Phosphate Dehydrogenases/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Mice , Mice, Inbred BALB C , Middle Aged , Oligonucleotides/metabolism , Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...