Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232513

ABSTRACT

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.


Subject(s)
Cerebral Small Vessel Diseases , Desoxycorticosterone Acetate , Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Anti-Inflammatory Agents/metabolism , Cerebral Small Vessel Diseases/metabolism , Cerebral Small Vessel Diseases/therapy , Disease Models, Animal , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Rats
2.
Nat Commun ; 11(1): 5236, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067431

ABSTRACT

The etiology of major neurodevelopmental disorders such as schizophrenia and autism is unclear, with evidence supporting a combination of genetic factors and environmental insults, including viral infection during pregnancy. Here we utilized a mouse model of maternal immune activation (MIA) with the viral mimic PolyI:C infection during early gestation. We investigated the transcriptional changes in the brains of mouse fetuses following MIA during the prenatal period, and evaluated the behavioral and biochemical changes in the adult brain. The results reveal an increase in RNA editing levels and dysregulation in brain development-related gene pathways in the fetal brains of MIA mice. These MIA-induced brain editing changes are not observed in adulthood, although MIA-induced behavioral deficits are observed. Taken together, our findings suggest that MIA induces transient dysregulation of RNA editing at a critical time in brain development.


Subject(s)
Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Pregnancy Complications/immunology , Pregnancy/immunology , Prenatal Exposure Delayed Effects/genetics , RNA Editing , Animals , Behavior, Animal , Brain/growth & development , Brain/immunology , Brain/metabolism , Disease Models, Animal , Female , Immunity, Maternally-Acquired , Mice , Mice, Inbred C57BL , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/psychology , Poly I-C/adverse effects , Poly I-C/immunology , Pregnancy Complications/etiology , Pregnancy Complications/genetics , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/psychology
3.
Front Oncol ; 10: 1500, 2020.
Article in English | MEDLINE | ID: mdl-33042795

ABSTRACT

To achieve a cure for metastatic breast cancer, further understanding of molecular drivers of the metastatic cascade is essential. Currently, chemotherapy regimens include doxorubicin and paclitaxel which act in part by inducing the unfolded protein response (UPR). The master regulator of the UPR, glucose regulated protein 78 (GRP78), localizes on the surface of tumor cells and is associated with metastatic disease. Cyclic AMP responsive element binding protein 3-like 1 (CREB3L1), a member of the UPR, is a breast cancer metastasis suppressor that acts on cyclic AMP to promote the expression of target genes including GRP78. The aim of the present study was to evaluate the effects of chemotherapy on CREB3L1 and cell-surface GRP78 expression and its association with the development of breast cancer metastasis. For this purpose, we use breast cancer cells migration in vitro assays and an in vivo metastatic mouse model. The results showed that chemotherapy activated CREB3L1 and enhanced cell-surface GRP78 expression specifically in triple-negative breast cancer cells (TNBC), reducing their migration and metastatic potential. CREB3L1 knockout (KO) in the triple negative MDAMB231 cell line using CRISPR/Cas9 technology led to inhibition of GRP78 expression and abrogation of the CREB3L1 metastatic suppression function. Inoculation of CREB3L1-KO MDAMB231 cells into a mouse metastatic model induced a massive metastatic profile which chemotherapy failed to prevent. These findings elucidate a potential pathway to the development of a novel treatment strategy for metastatic TNBC based on modulating CREB3L1 and cell-surface GRP78 expression by chemotherapy and GRP78-targeted drugs.

4.
Front Neurosci ; 13: 990, 2019.
Article in English | MEDLINE | ID: mdl-31611761

ABSTRACT

Myeloperoxidase (MPO) is an enzyme expressed mostly by neutrophils and is a primary mediator of neutrophils oxidative stress response. While a profound body of evidence associates neutrophil-derived MPO in the pathogenesis of Alzheimer's disease (AD), this role has not been assessed in an animal model of AD. Here, we produced hematologic chimerism in the 5XFAD mouse model of AD, with MPO deficient mice, resulting in 5XFAD with hematologic MPO deficiency (5XFAD-MPO KO). Behavioral examinations of 5XFAD-MPO KO showed significant superior performance in spatial learning and memory, associative learning, and anxiety/risk assessment behavior, as compared to 5XFAD mice transplanted with WT cells (5XFAD-WT). Hippocampal immunohistochemical and mRNA expression analyses showed significantly reduced levels of inflammatory mediators in 5XFAD-MPO KO mice with no apparent differences in the numbers of amyloid-ß plaques. In addition, immunoblotting and mRNA analyses showed significantly reduced levels of APOE in 5XFAD-MPO KO. Together, these results indicate a substantial involvement of neutrophil-derived MPO in the pathology of 5XFAD model of AD and suggest MPO as a potential therapeutic target in AD.

5.
Front Neurosci ; 13: 151, 2019.
Article in English | MEDLINE | ID: mdl-30872995

ABSTRACT

The peripheral nervous system has an intrinsic ability to regenerate after injury. However, this process is slow, incomplete, and often accompanied by disturbing motor and sensory consequences. Sciatic nerve injury (SNI), which is the most common model for studying peripheral nerve injury, is characterized by damage to both motor and sensory fibers. The main goal of this study is to examine the feasibility of administration of human muscle progenitor cells (hMPCs) overexpressing neurotrophic factor (NTF) genes, known to protect peripheral neurons and enhance axon regeneration and functional recovery, to ameliorate motoric and sensory deficits in SNI mouse model. To this end, hMPCs were isolated from a human muscle biopsy, and manipulated to ectopically express brain-derived neurotrophic factor (BDNF), glial-cell-line-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF-1). These hMPC-NTF were transplanted into the gastrocnemius muscle of mice after SNI, and motor and sensory functions of the mice were assessed using the CatWalk XT system and the hot plate test. ELISA analysis showed that genetically manipulated hMPC-NTF express significant amounts of BDNF, GDNF, VEGF, or IGF-1. Transplantation of 3 × 106 hMPC-NTF was shown to improve motor function and gait pattern in mice following SNI surgery, as indicated by the CatWalk XT system 7 days post-surgery. Moreover, using the hot-plate test, performed 6 days after surgery, the treated mice showed less sensory deficits, indicating a palliative effect of the treatment. ELISA analysis following transplantation demonstrated increased NTF expression levels in the gastrocnemius muscle of the treated mice, reinforcing the hypothesis that the observed positive effect was due to the transplantation of the genetically manipulated hMPC-NTF. These results show that genetically modified hMPC can alleviate both motoric and sensory deficits of SNI. The use of hMPC-NTF demonstrates the feasibility of a treatment paradigm, which may lead to rapid, high-quality healing of damaged peripheral nerves due to administration of hMPC. Our approach suggests a possible clinical application for the treatment of peripheral nerve injury.

6.
Curr Alzheimer Res ; 16(4): 281-292, 2019.
Article in English | MEDLINE | ID: mdl-30819082

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD) is associated with impairments in key brain Mitogen- Activated Protein Kinase (MAPK) signaling cascades including the p38, c-Jun N-terminal kinase (JNK), ERK and Akt pathways. Apolipoprotein E4 (ApoE4) is the most prevalent genetic risk factor of AD. OBJECTIVES: To investigate the extent to which the MAPK signaling pathway plays a role in mediating the pathological effects of apoE4 and can be reversed by experimental manipulations. METHODS: Measurements of total level and activation of MAPK signaling pathway factors, obtained utilizing immunoblot assay of hippocampal tissues from naïve and viral-treated apoE3 and apoE4 targeted replacement mice. RESULTS: ApoE4 mice showed robust activation of the stress related p38 and JNK pathways and a corresponding decrease in Akt activity, which is coupled to activation of GSK3ß and tau hyperphosphorylation. There was no effect on the ERK pathway. We have previously shown that the apoE4- related pathology, namely; accumulation of Aß, hyper-phosphorylated tau, synaptic impairments and decreased VEGF levels can be reversed by up-regulation of VEGF level utilizing a VEGF-expressing adeno-associated virus. Utilizing this approach, we assessed the extent to which the AD-hallmark and synaptic pathologies of apoE4 are related to the corresponding MAPK signaling effects. This revealed that the reversal of the apoE4-driven pathology via VEGF treatment was associated with a reversal of the p38 and Akt related effects. CONCLUSION: Taken together, these results suggest that the p38 and Akt pathways play a role in mediating the AD-related pathological effects of apoE4 in the hippocampus.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , MAP Kinase Signaling System/physiology , Alzheimer Disease/metabolism , Animals , Female , Male , Mice , Mice, Transgenic , Vascular Endothelial Growth Factor A/metabolism
7.
J Mol Neurosci ; 66(2): 180-187, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30178388

ABSTRACT

Research into stroke is driven by frustration over the limited available therapeutics. Targeting a single aspect of this multifactorial disease contributes to the therapeutic boundaries. To overcome this, we devised a novel multifactorial-cocktail treatment, using lentiviruses encoding excitatory amino acid transporter 2 (EAAT2(, glutamate dehydrogenase 2 (GDH2), and nuclear factor E2-related factor 2 (Nrf2) genes, that acts synergistically to address the effected excito-oxidative axis. Here, we used the vasoconstrictor endothelin-1 (ET-1) to induce focal ischemic injury in mice by direct injection into the striatum. Mice treated with the mixture of these three genes show significant improvement in body balance, motor coordination, and decreased motor asymmetry compared to each gene separately. These results demonstrate that overexpression of the combined EAAT2, GDH2, and NRF2 genes can provide neuroprotection after ischemic injury.


Subject(s)
Brain Ischemia/therapy , Genetic Therapy/methods , Stroke/therapy , Animals , Brain Ischemia/etiology , Endothelin-1/administration & dosage , Endothelin-1/toxicity , Excitatory Amino Acid Transporter 2/genetics , Excitatory Amino Acid Transporter 2/metabolism , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Stroke/etiology
8.
PLoS One ; 13(2): e0192954, 2018.
Article in English | MEDLINE | ID: mdl-29489843

ABSTRACT

Stroke is a leading cause of death worldwide and inflicts serious long-term damage and disability. The vasoconstrictor Endothelin-1, presenting long-term neurological deficits associated with excitotoxicity and oxidative stress is being increasingly used to induce focal ischemic injury as a model of stroke. A DJ-1 based peptide named ND-13 was shown to protect against glutamate toxicity, neurotoxic insults and oxidative stress in various animal models. Here we focus on the benefits of treatment with ND-13 on the functional outcome of focal ischemic injury. Wild type C57BL/6 mice treated with ND-13, after ischemic induction in this model, showed significant improvement in motor function, including improved body balance and motor coordination, and decreased motor asymmetry. We found that DJ-1 knockout mice are more sensitive to Endothelin-1 ischemic insult than wild type mice, contributing thereby additional evidence to the widely reported relevance of DJ-1 in neuroprotection. Furthermore, treatment of DJ-1 knockout mice with ND-13, following Endothelin-1 induced ischemia, resulted in significant improvement in motor functions, suggesting that ND-13 provides compensation for DJ-1 deficits. These preliminary results demonstrate a possible basis for clinical application of the ND-13 peptide to enhance neuroprotection in stroke patients.


Subject(s)
Brain Ischemia/drug therapy , Peptide Fragments/therapeutic use , Protein Deglycase DJ-1/therapeutic use , Animals , Brain Ischemia/etiology , Brain Ischemia/physiopathology , Cell-Penetrating Peptides/genetics , Cell-Penetrating Peptides/therapeutic use , Disease Models, Animal , Endothelin-1/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Peptide Fragments/genetics , Protein Deglycase DJ-1/deficiency , Protein Deglycase DJ-1/genetics , Recovery of Function/drug effects , Stroke/drug therapy , Stroke/etiology , Stroke/physiopathology , Vasoconstrictor Agents/toxicity
9.
Chempluschem ; 83(5): 320-333, 2018 May.
Article in English | MEDLINE | ID: mdl-31957349

ABSTRACT

The design and synthesis of a novel nuclear factor erythroid 2-related factor 2 (Nrf2) enhancer is reported. Using a structure-based virtual screening approach, several commercially available compounds were identified as having high probability to interact with the Nrf2-binding pocket in the Kelch-like ECH-associated protein 1 (Keap1). Keap1 is an adaptor protein that recruits Nrf2 to a cullin-3-dependent ubiquitin ligase complex. The identified compounds were tested against rat pheochromocytoma PC-12 cells for their cytoprotective activity, and one compound (SKT359126) demonstrated an Nrf2-mediated cell-protective effect. Based on the structure of SKT359126, 23 novel derivatives were synthesized and evaluated. Of the screened derivatives, 1-{4-[(3,4-dihydroxybenzylidene)amino]phenyl}-5-oxopyrrolidine-3-carboxylic acid demonstrated better activity than the parent molecules in activating the Nrf2 transduction pathway in a dose- and time-dependent manner. This compound represents a promising starting point for the development of therapeutics for the treatment of oxidative-stress-related diseases.

10.
Chempluschem ; 83(5): 318, 2018 May.
Article in English | MEDLINE | ID: mdl-31957368

ABSTRACT

Invited for this month's cover is Prof. Arie Gruzman (Bar-Ilan University) and collaborators who have developed an Nrf2 enhancer. This compound activated the Nrf2 transduction pathway and because of this the translation of dozens of antioxidant cytoprotective proteins in a dose- and time-dependent manner and protected PC-12 cells against oxidative stress. Considering the imbalance between production and elimination of oxidative species involved in the pathophysiology of many human diseases, this compound is a promising starting point for the development of novel therapeutics for the treatment of oxidative-stress-related diseases. Read the full text of the article at 10.1002/cplu.201700539.

11.
J Alzheimers Dis ; 58(2): 389-400, 2017.
Article in English | MEDLINE | ID: mdl-28453480

ABSTRACT

BACKGROUND: Metal-ion-chelation was suggested to prevent zinc and copper ions-induced amyloid-ß (Aß) aggregation and oxidative stress, both implicated in the pathophysiology of Alzheimer's disease (AD). In a quest for biocompatible metal-ion chelators potentially useful for AD therapy, we previously tested a series of nucleoside 5'-phosphorothioate derivatives as agents for decomposition of Cu(I)/Cu(II)/Zn(II)-Aß-aggregates, and as inhibitors of OH radicals formation in Cu(I) or Fe(II) /H2O2 solution. Specifically, in our recent study we have identified 2-SMe-ADP(α-S), designated as SAS, as a most promising neuroprotectant. OBJECTIVE: To further explore SAS ability to protect the brain from Aß toxicity both in vitro and in vivo. METHODS: We evaluated SAS ability to decompose or inhibit the formation of Aß42-M(II) aggregates, and rescue primary neurons and astrocytes from Aß42 toxicity. Furthermore, we aimed at exploring the therapeutic effect of SAS on behavioral and cognitive deficits in the 5XFAD mouse model of AD. RESULTS: We found that SAS can rescue primary culture of neurons and astrocytes from Aß42 toxicity and to inhibit the formation and dissolve Aß42-Zn(II)/Cu(II) aggregates. Furthermore, we show that SAS treatment can prevent behavioral disinhibition and ameliorate spatial working memory deficits in 5XFAD mice. Notably, the mice were treated at the age of 2 months, before the onset of AD symptoms, for a duration of 2 months, while the effect was demonstrated at the age of 6 months. CONCLUSION: Our results indicate that SAS has the potential to delay progression of core pathological characteristics of AD in the 5XFAD mouse model.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Antipsychotic Agents/therapeutic use , Biocompatible Materials/therapeutic use , Phenothiazines/therapeutic use , Adenosine/analogs & derivatives , Adenosine/pharmacology , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Animals, Newborn , Antipsychotic Agents/chemistry , Biocompatible Materials/chemistry , Cells, Cultured , Cerebral Cortex/cytology , Copper/therapeutic use , Disease Models, Animal , L-Lactate Dehydrogenase/metabolism , Maze Learning/physiology , Memory Disorders/etiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Platelet Aggregation/drug effects , Presenilin-1/genetics , Presenilin-1/metabolism , Zinc/therapeutic use
12.
Hum Mol Genet ; 26(13): 2462-2471, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28402427

ABSTRACT

Cannabis abuse in adolescence is associated with increased risk of psychotic disorders. Δ-9-tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis. Disrupted-In-Schizophrenia-1 (DISC1) protein is a driver for major mental illness by influencing neurodevelopmental processes. Here, utilizing a unique mouse model based on host (DISC1) X environment (THC administration) interaction, we aimed at studying the pathobiological basis through which THC exposure elicits psychiatric manifestations. Wild-Type and dominant-negative-DISC1 (DN-DISC1) mice were injected with THC (10 mg/kg) or vehicle for 10 days during mid-adolescence-equivalent period. Behavioral tests were conducted to assess exploratory activity (open field test, light-dark box test) and cognitive function (novel object recognition test). Electrophysiological effect of THC was evaluated using acute hippocampal slices, and hippocampal cannabinoid receptor type 1 and brain-derived neurotrophic factor (BDNF) protein levels were measured. Our results indicate that THC exposure elicits deficits in exploratory activity and recognition memory, together with reduced short-term synaptic facilitation and loss of BDNF surge in the hippocampus of DN-DISC mice, but not in wild-type mice. Over-expression of BDNF in the hippocampus of THC-treated DN-DISC1 mice prevented the impairment in recognition memory. The results of this study imply that induction of BDNF following adolescence THC exposure may serve as a homeostatic response geared to maintain proper cognitive function against exogenous insult. The BDNF surge in response to THC is perturbed in the presence of mutant DISC1, suggesting DISC1 may be a useful probe to identify biological cascades involved in the neurochemical, electrophysiological, and behavioral effects of cannabis related psychiatric manifestations.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dronabinol/adverse effects , Nerve Tissue Proteins/drug effects , Adolescent , Animals , Animals, Newborn , Cannabis/adverse effects , Cognition/drug effects , Cognition Disorders/metabolism , Disease Models, Animal , Dronabinol/metabolism , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Psychotic Disorders
13.
J Alzheimers Dis ; 53(4): 1443-58, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27372644

ABSTRACT

Apolipoprotein E4 (ApoE4), the most prevalent genetic risk factor for Alzheimer's disease (AD), is associated with increased neurodegeneration and vascular impairments. Vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, has recently been shown to play a crucial role in the nervous system. The objective of this research is to examine the role of VEGF in mediating the apoE4-driven pathologies. We show that hippocampal VEGF levels are lower in apoE4 targeted replacement mice compared to the corresponding apoE3 mice. This effect was accompanied by a specific decrease in both VEGF receptor-2 and HIF1-α. We next set to examine whether upregulation of VEGF can reverse apoE4-driven pathologies, namely the accumulation of hyperphosphorylated tau (AT8) and Aß42, and reduced levels of the pre-synaptic marker, VGluT1, and of the ApoE receptor, ApoER2. This was first performed utilizing intra-hippocampal injection of VEGF-expressing-lentivirus (LV-VEGF). This revealed that LV-VEGF treatment reversed the apoE4-driven cognitive deficits and synaptic pathologies. The levels of Aß42 and AT8, however, were increased in apoE3 mice, masking any potential effects of this treatment on the apoE4 mice. Follow-up experiments utilizing VEGF-expressing adeno-associated-virus (AAV-VEGF), which expresses VEGF specifically under the GFAP astrocytic promoter, prevented this effects on apoE3 mice, and reversed the apoE4-related increase in Aß42 and AT8. Taken together, these results suggest that apoE4-driven pathologies are mediated by a VEGF-dependent pathway, resulting in cognitive impairments and brain pathology. These animal model findings suggest that the VEGF system is a promising target for the treatment of apoE4 carriers in AD.


Subject(s)
Apolipoprotein E4/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Vascular Endothelial Growth Factor A/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Dependovirus/genetics , Disease Models, Animal , Genetic Vectors , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , LDL-Receptor Related Proteins/metabolism , Lentivirus/genetics , Male , Memory Disorders/metabolism , Memory Disorders/pathology , Mice, Inbred C57BL , Mice, Transgenic , Peptide Fragments/metabolism , Synapses/metabolism , Synapses/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , tau Proteins/metabolism
14.
PLoS One ; 11(2): e0148170, 2016.
Article in English | MEDLINE | ID: mdl-26901405

ABSTRACT

Multiple System Atrophy (MSA) is a sporadic neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and dysautonomia, in various combinations. In MSA with parkinsonism (MSA-P), the degeneration is mainly restricted to the substantia nigra pars compacta and putamen. Studies have identified alterations in DJ-1 (PARK7), a key component of the anti-oxidative stress response, in Parkinson's disease (PD) and MSA patients. Previously we have shown that a short DJ-1-based peptide named ND-13, protected cultured cells against neurotoxic insults and improved behavioral outcome in animal models of Parkinson's disease (PD). In this study, we used the 3-Nitropropionic acid (3-NP)-induced mouse model of MSA and treated the animals with ND-13 in order to evaluate its therapeutic effects. Our results show that ND-13 protects cultured cells against oxidative stress generated by the mitochondrial inhibitor, 3-NP. Moreover, we show that ND-13 attenuates nigrostriatal degeneration and improves performance in motor-related behavioral tasks in 3-NP-treated mice. Our findings suggest a rationale for using ND-13 as a promising therapeutic approach for treatment of MSA.


Subject(s)
Microtubule-Associated Proteins/chemistry , Multiple System Atrophy/drug therapy , Neuroprotective Agents/therapeutic use , Peptides/chemistry , Peptides/therapeutic use , Animals , Disease Models, Animal , Male , Mice , Multiple System Atrophy/chemically induced , Neuroprotective Agents/chemistry , Nitro Compounds/pharmacology , PC12 Cells , Propionates/pharmacology , Rats
15.
J Mol Neurosci ; 58(1): 39-45, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26385386

ABSTRACT

Sciatic nerve damage is a common medical problem. The main causes include direct trauma, prolonged external nerve compression, and pressure from disk herniation. Possible complications include leg numbness and the loss of motor control. In mild cases, conservative treatment is feasible. However, following severe injury, recovery may not be possible. Neuronal regeneration, survival, and maintenance can be achieved by neurotrophic factors (NTFs). In this study, we examined the potency of combining brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) on the recovery of motor neuron function after crush injury of the sciatic nerve. We show that combined NTF application increases the survival of motor neurons exposed to a hypoxic environment. The ectopic expression of NTFs in the injured muscle improves the recovery of the sciatic nerve after crush injury. A significantly faster recovery of compound muscle action potential (CMAP) amplitude and conduction velocity is observed after muscle injections of viral vectors expressing a mixture of the four NTF genes. Our findings suggest a rationale for using genetic treatment with a combination of NTF-expressing vectors, as a potential therapeutic approach for severe peripheral nerve injury.


Subject(s)
Brain-Derived Neurotrophic Factor/therapeutic use , Glial Cell Line-Derived Neurotrophic Factor/therapeutic use , Muscle, Skeletal/metabolism , Peripheral Nerve Injuries/drug therapy , Vascular Endothelial Growth Factor A/therapeutic use , Action Potentials , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Cell Line , Genetic Therapy , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Humans , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor I/therapeutic use , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Nerve Regeneration/drug effects , Recovery of Function , Sciatic Nerve/drug effects , Sciatic Nerve/injuries , Sciatic Nerve/physiology , Vascular Endothelial Growth Factor A/pharmacology
16.
J Mol Neurosci ; 58(1): 46-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26691332

ABSTRACT

The 150-year-long search for treatments of amyotrophic lateral sclerosis (ALS) is still fueled by frustration over the shortcomings of available therapeutics. Contributing to the therapeutic limitations might be the targeting of a single aspect of this multifactorial-multisystemic disease. In an attempt to overcome this, we devised a novel multifactorial-cocktail treatment, using lentiviruses encoding: EAAT2, GDH2, and NRF2, that act synergistically to address the band and width of the effected excito-oxidative axis, reducing extracellular-glutamate and glutamate availability while improving the metabolic state and the anti-oxidant response. This strategy yielded particularly impressive results, as all three genes together but not separately prolonged survival in ALS mice by an average of 19-22 days. This was accompanied by improvement in every parameter evaluated, including body-weight loss, reflex score, neurologic score, and motor performance. We hope to provide a novel strategy to slow down disease progression and alleviate symptoms of patients suffering from ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Genetic Therapy , Glutamate Plasma Membrane Transport Proteins/genetics , Glutamic Acid/metabolism , Oxidative Stress , Superoxide Dismutase/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cells, Cultured , Glutamate Plasma Membrane Transport Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Mutation, Missense , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Sugar Alcohol Dehydrogenases/genetics , Sugar Alcohol Dehydrogenases/metabolism , Superoxide Dismutase-1
17.
PLoS One ; 10(5): e0127549, 2015.
Article in English | MEDLINE | ID: mdl-26024237

ABSTRACT

Drugs currently used for treating Parkinson's disease patients provide symptomatic relief without altering the neurodegenerative process. Our aim was to examine the possibility of using DJ-1 (PARK7), as a novel therapeutic target for Parkinson's disease. We designed a short peptide, named ND-13. This peptide consists of a 13 amino acids segment of the DJ-1-protein attached to 7 amino acids derived from TAT, a cell penetrating protein. We examined the effects of ND-13 using in vitro and in vivo experimental models of Parkinson's disease. We demonstrated that ND-13 protects cultured cells against oxidative and neurotoxic insults, reduced reactive oxygen species accumulation, activated the protective erythroid-2 related factor 2 system and increased cell survival. ND-13 robustly attenuated dopaminergic system dysfunction and in improved the behavioral outcome in the 6-hydroxydopamine mouse model of Parkinson's disease, both in wild type and in DJ-1 knockout mice. Moreover, ND-13 restored dopamine content in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model. These findings validate DJ-1 as a promising therapeutic target in Parkinson's disease and identify a novel peptide with clinical potential, which may be significant for a broader range of neurological diseases, possibly with an important impact for the neurosciences.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , MPTP Poisoning/drug therapy , NF-E2-Related Factor 2/metabolism , Oncogene Proteins/metabolism , Peptides/pharmacology , Peroxiredoxins/metabolism , Animals , Dopaminergic Neurons/pathology , Humans , MPTP Poisoning/genetics , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , Oncogene Proteins/genetics , PC12 Cells , Peroxiredoxins/genetics , Protein Deglycase DJ-1 , Rats , Reactive Oxygen Species/metabolism
18.
ChemMedChem ; 10(5): 850-61, 2015 May.
Article in English | MEDLINE | ID: mdl-25772747

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective death of motor neurons and skeletal muscle atrophy. The majority of ALS cases are acquired spontaneously, with inherited disease accounting for only 10 % of all cases. Recent studies provide compelling evidence that aggregates of misfolded proteins underlie both types of ALS. Small molecules such as artificial chaperones can prevent or even reverse the aggregation of proteins associated with various human diseases. However, their very high active concentration (micromolar range) severely limits their utility as drugs. We synthesized several ester and amide derivatives of chemical chaperones. The lead compound 14, 3-((5-((4,6-dimethylpyridin-2-yl)methoxy)-5-oxopentanoyl)oxy)-N,N-dimethylpropan-1-amine oxide shows, in the micromolar concentration range, both neuronal and astrocyte protective effects in vitro; at daily doses of 10 mg kg(-1) 14 improved the neurological functions and delayed body weight loss in ALS mice. Members of this new chemical chaperone derivative class are strong candidates for the development of new drugs for ALS patients.


Subject(s)
Amides/therapeutic use , Amyotrophic Lateral Sclerosis/drug therapy , Amides/chemical synthesis , Amides/chemistry , Animals , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mice , Mice, Transgenic , Molecular Structure
19.
Stem Cells Transl Med ; 3(3): 375-86, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24477074

ABSTRACT

Human oral mucosa stem cells (hOMSC) are a recently described neural crest-derived stem cell population. Therapeutic quantities of potent hOMSC can be generated from small biopsies obtained by minimally invasive procedures. Our objective was to evaluate the potential of hOMSC to differentiate into astrocyte-like cells and provide peripheral neuroprotection. We induced hOMSC differentiation into cells showing an astrocyte-like morphology that expressed characteristic astrocyte markers as glial fibrillary acidic protein, S100ß, and the excitatory amino acid transporter 1 and secreted neurotrophic factors (NTF) such as brain-derived neurotrophic factor, vascular endothelial growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor 1. Conditioned medium of the induced cells rescued motor neurons from hypoxia or oxidative stress in vitro, suggesting a neuroprotective effect mediated by soluble factors. Given the neuronal support (NS) ability of the cells, the differentiated cells were termed hOMSC-NS. Rats subjected to sciatic nerve injury and transplanted with hOMSC-NS showed improved motor function after transplantation. At the graft site we found the transplanted cells, increased levels of NTF, and a significant preservation of functional neuromuscular junctions, as evidenced by colocalization of α-bungarotoxin and synaptophysin. Our findings show for the first time that hOMSC-NS generated from oral mucosa exhibit neuroprotective effects in vitro and in vivo and point to their future therapeutic use in neural disorders.


Subject(s)
Astrocytes/cytology , Astrocytes/transplantation , Mouth Mucosa/cytology , Peripheral Nerve Injuries/therapy , Stem Cells/cytology , Animals , Astrocytes/metabolism , Biomarkers/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Bungarotoxins/chemistry , Cell Differentiation/drug effects , Culture Media, Conditioned/pharmacology , Gene Expression , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Male , Motor Neurons/cytology , Motor Neurons/drug effects , Motor Neurons/metabolism , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism , Neuromuscular Junction , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , Rats , Rats, Sprague-Dawley , S100 Calcium Binding Protein beta Subunit/genetics , S100 Calcium Binding Protein beta Subunit/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Synaptophysin/chemistry
20.
J Mol Neurosci ; 50(3): 542-50, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23536331

ABSTRACT

Astrocytes are the most abundant glial cell type in the brain. Impairment in astrocyte functions can critically influence neuronal survival and leads to neurodegeneration. Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by motor dysfunction that results from progressive neuronal loss. Astrocytic dysfunction was demonstrated in human samples and in experimental models of PD. Mutations in DJ-1 (PARK7) leading to loss of functional protein cause familial PD and enhance sensitivity to oxidative insults. Recently, an increase in DJ-1's expression was found in reactive astrocytes in various neurodegenerative disorders. Here we show that lack of DJ-1 attenuates astrocytes' ability to support neuronal cells, thereby leading to accelerated neuronal damage. DJ-1 knockout mice demonstrated increased vulnerability in vivo to 6-hydroxydopamine (6-OHDA) hemiparkinsonian PD model. Astrocytes isolated from DJ-1 knockout mice showed an inferior ability to protect human neuroblastoma cells against 6-OHDA insult both by co-culture and through their conditioned media, as compared to wild-type astrocytes. DJ-1 knockout astrocytes showed blunted ability to increase the expression of cellular protective mechanisms against oxidative stress mediated via Nrf-2 and HO-1 in response to exposure to 6-OHDA. These experiments demonstrated that lack of DJ-1 impairs astrocyte-mediated neuroprotection.


Subject(s)
Astrocytes/metabolism , Oncogene Proteins/genetics , Animals , Cell Line, Tumor , Cell Survival/drug effects , Culture Media, Conditioned/pharmacology , Heme Oxygenase-1/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Neurons/drug effects , Neurons/pathology , Oxidative Stress , Oxidopamine/toxicity , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Peroxiredoxins , Protein Deglycase DJ-1
SELECTION OF CITATIONS
SEARCH DETAIL
...