Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Arch Microbiol ; 204(8): 506, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35857142

ABSTRACT

Strains Marseille-P3761 and Marseille-P3195 are representatives of two bacterial species isolated from human specimens. Strain Marseille-P3761 was isolated from the stool of a healthy volunteer, while strain Marseille-P3915 was cultivated from the urine of a kidney transplant recipient. Both strains are anaerobic Gram-positive coccoid bacteria. Both are catalase-negative and oxidase-negative and grow optimally at 37 °C in anaerobic conditions. They also metabolize carbohydrates, such as galactose, glucose, fructose, and glycerol. The major fatty acids were hexadecanoic acid for both strains. The highest digital DNA-DNA hybridization (dDDH) values of Marseille-P3761 and Marseille-P3195 strains when compared to their closest phylogenetic relatives were 52.3% and 56.4%, respectively. Strains Marseille-P3761 and Marseille-P3195 shared an OrthoANI value of 83.5% which was the highest value found with Peptoniphilus species studied here. The morphological, biochemical, phenotypic and genomic characteristics strongly support that these strains are new members of the Peptoniphilus genus. Thus, we suggest that Peptoniphilus coli sp. nov., and Peptoniphilus urinae sp. nov., are new species for which strains Marseille-P3761 (CSUR P3761 = CCUG 71,569) and Marseille-P3195 (CSUR P3195 = DSM 103,468) are their type strains, respectively of two new Peptoniphilus species, for which we propose the names Peptoniphilus coli sp. nov. and Peptoniphilus urinae sp. nov., respectively.


Subject(s)
Clostridiales , Gram-Positive Bacteria , Bacteria, Anaerobic/genetics , Bacterial Typing Techniques , Clostridiales/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Gram-Positive Bacteria/genetics , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
PLoS One ; 14(3): e0213338, 2019.
Article in English | MEDLINE | ID: mdl-30856220

ABSTRACT

Trichomonas tenax, an anaerobic protist difficult to cultivate with an unreliable molecular identification, has been suspected of involvement in periodontitis, a multifactorial inflammatory dental disease affecting the soft tissue and bone of periodontium. A cohort of 106 periodontitis patients classified by stages of severity and 85 healthy adult control patients was constituted. An efficient culture protocol, a new identification tool by real-time qPCR of T. tenax and a Multi-Locus Sequence Typing system (MLST) based on T. tenax NIH4 reference strain were created. Fifty-three strains of Trichomonas sp. were obtained from periodontal samples. 37/106 (34.90%) T. tenax from patients with periodontitis and 16/85 (18.80%°) T. tenax from control patients were detected by culture (p = 0.018). Sixty of the 191 samples were tested positive for T. tenax by qPCR, 24/85 (28%) controls and 36/106 (34%) periodontitis patients (p = 0.089). By combining both results, 45/106 (42.5%) patients were positive by culture and/or PCR, as compared to 24/85 (28.2%) controls (p = 0.042). A link was established between the carriage in patients of Trichomonas tenax and the severity of the disease. Genotyping demonstrates the presence of strain diversity with three major different clusters and a relation between disease strains and the periodontitis severity (p<0.05). More frequently detected in periodontal cases, T. tenax is likely to be related to the onset or/and evolution of periodontal diseases.


Subject(s)
Genome, Protozoan , Periodontitis/epidemiology , Severity of Illness Index , Trichomonas Infections/parasitology , Trichomonas/pathogenicity , Adult , Case-Control Studies , Clone Cells , France/epidemiology , Humans , Incidence , Multilocus Sequence Typing , Periodontitis/parasitology , Phylogeny , Prospective Studies , Protozoan Proteins/genetics , Trichomonas/genetics , Trichomonas/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...