Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 28(19): 5708-5725, 2022 10.
Article in English | MEDLINE | ID: mdl-35848527

ABSTRACT

Climate change is causing an increase in the frequency and intensity of marine heatwaves (MHWs) and mass mortality events (MMEs) of marine organisms are one of their main ecological impacts. Here, we show that during the 2015-2019 period, the Mediterranean Sea has experienced exceptional thermal conditions resulting in the onset of five consecutive years of widespread MMEs across the basin. These MMEs affected thousands of kilometers of coastline from the surface to 45 m, across a range of marine habitats and taxa (50 taxa across 8 phyla). Significant relationships were found between the incidence of MMEs and the heat exposure associated with MHWs observed both at the surface and across depths. Our findings reveal that the Mediterranean Sea is experiencing an acceleration of the ecological impacts of MHWs which poses an unprecedented threat to its ecosystems' health and functioning. Overall, we show that increasing the resolution of empirical observation is critical to enhancing our ability to more effectively understand and manage the consequences of climate change.


Subject(s)
Aquatic Organisms , Ecosystem , Climate Change , Mediterranean Sea
2.
Mar Environ Res ; 179: 105686, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35779402

ABSTRACT

Savalia savaglia is an ecosystem engineer listed as Near-Threatened by the IUCN, even though effective management and proper monitoring efforts to assess its distribution is still lacking. The record of large, long-established colonies can indicate the occurrence of areas with limited human local pressure. These areas may be considered as proxies for the creation of baselines of reference useful to design restoration strategies. The aim of this work was to update the distribution of S. savaglia Mediterranean populations to develop an Ecological Niche Model, highlighting potential areas for future monitoring programs. Occurrence data were collected and harmonized into a single dataset using the scientific literature and validated observations to feed a presence-only MaxEnt model, obtaining a basin-level potential distribution of the species. The results of our study can support decision-makers in marine spatial planning measures including the preservation of mesophotic environments and prioritizing areas for conservation.


Subject(s)
Anthozoa/growth & development , Biological Monitoring/methods , Conservation of Natural Resources , Animals , Anthozoa/classification , Biodiversity , Ecosystem , Endangered Species , Humans , Mediterranean Sea , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...